
Hans A Heus

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1079803/publications.pdf Version: 2024-02-01

HANG & HEUS

#	Article	IF	CITATIONS
1	Improving Breast Cancer Treatment Specificity Using Aptamers Obtained by 3D Cell-SELEX. Pharmaceuticals, 2021, 14, 349.	1.7	16
2	Multivalent Sgc8c-aptamer decorated polymer scaffolds for leukemia targeting. Chemical Communications, 2021, 57, 2744-2747.	2.2	12
3	Ramified rolling circle amplification for synthesis of nucleosomal DNA sequences. Analytical Biochemistry, 2020, 588, 113469.	1.1	12
4	Transcription and Translation in Cytomimetic Protocells Perform Most Efficiently at Distinct Macromolecular Crowding Conditions. ACS Synthetic Biology, 2020, 9, 2797-2807.	1.9	39
5	Dissipative adaptation in driven self-assembly leading to self-dividing fibrils. Nature Nanotechnology, 2018, 13, 849-855.	15.6	160
6	Biomimetic Stress Sensitive Hydrogel Controlled by DNA Nanoswitches. Biomacromolecules, 2017, 18, 3310-3317.	2.6	31
7	A membrane-anchored aptamer sensor for probing IFNÎ ³ secretion by single cells. Chemical Communications, 2017, 53, 8066-8069.	2.2	58
8	DNAâ€Responsive Polyisocyanopeptide Hydrogels with Stress‣tiffening Capacity. Advanced Functional Materials, 2016, 26, 9075-9082.	7.8	42
9	Stable isotope labeling methods for DNA. Progress in Nuclear Magnetic Resonance Spectroscopy, 2016, 96, 89-108.	3.9	15
10	Protein Synthesis in Coupled and Uncoupled Cell-Free Prokaryotic Gene Expression Systems. ACS Synthetic Biology, 2016, 5, 1433-1440.	1.9	17
11	Cellâ€Like Nanostructured Environments Alter Diffusion and Reaction Kinetics in Cellâ€Free Gene Expression. ChemBioChem, 2016, 17, 228-232.	1.3	18
12	Macromolecular crowding creates heterogeneous environments of gene expression in picolitre droplets. Nature Nanotechnology, 2016, 11, 191-197.	15.6	123
13	Macromolecular Crowding in the Cytosol: Underappreciated or Overestimated?. Biophysical Journal, 2015, 108, 114a.	0.2	0
14	Enzymatic preparation of multimilligram amounts of pure single-stranded DNA samples for material and analytical sciences. Analytical Biochemistry, 2015, 475, 68-73.	1.1	17
15	Associative Interactions in Crowded Solutions of Biopolymers Counteract Depletion Effects. Journal of the American Chemical Society, 2015, 137, 13041-13048.	6.6	55
16	Production of Homogeneous Recombinant RNA Using a tRNA Scaffold and Hammerhead Ribozymes. Methods in Molecular Biology, 2015, 1316, 33-44.	0.4	1
17	DNA-functionalized hydrogels for confined membrane-free in vitro transcription/translation. Lab on A Chip, 2014, 14, 2651.	3.1	44
18	Structural and thermodynamic signatures that define pseudotriloop RNA hairpins. Rna, 2013, 19, 1833-1839.	1.6	7

#	Article	IF	CITATIONS
19	Enhanced transcription rates in membrane-free protocells formed by coacervation of cell lysate. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 11692-11697.	3.3	282
20	Fast production of homogeneous recombinant RNA—towards large-scale production of RNA. Nucleic Acids Research, 2012, 40, e102-e102.	6.5	54
21	Force spectroscopy of Rev-peptide–RRE interaction from HIV-1. Soft Matter, 2012, 8, 2103-2109.	1.2	8
22	Unusual Loop-Sequence Flexibility of the Proximal RNA Replication Element in EMCV. PLoS ONE, 2011, 6, e24818.	1.1	2
23	Atomic force microscope-based single-molecule force spectroscopy of RNA unfolding. Analytical Biochemistry, 2011, 414, 1-6.	1.1	27
24	Network theory approach for data evaluation in the dynamic force spectroscopy of biomolecular interactions. Europhysics Letters, 2010, 89, 68004.	0.7	2
25	1H and 13C resonance assignments of a guanine sensing riboswitch's terminator hairpin. Biomolecular NMR Assignments, 2010, 4, 89-91.	0.4	1
26	Enzymatic stereospecific preparation of fluorescent S-adenosyl-l-methionine analogs. Analytical Biochemistry, 2010, 396, 280-283.	1.1	29
27	Functional analysis of the SRV-1 RNA frameshifting pseudoknot. Nucleic Acids Research, 2010, 38, 7665-7672.	6.5	24
28	Preparation of selective and segmentally labeled single-stranded DNA for NMR by self-primed PCR and asymmetrical endonuclease double digestion. Nucleic Acids Research, 2009, 37, e114-e114.	6.5	10
29	The structure–function relationship of the enterovirus 3′-UTR. Virus Research, 2009, 139, 209-216.	1.1	59
30	Cartilage–hair hypoplasia-associated mutations in the RNase MRP P3 domain affect RNA folding and ribonucleoprotein assembly. Biochimica Et Biophysica Acta - Molecular Cell Research, 2008, 1783, 455-466.	1.9	25
31	Multiple segmental and selective isotope labeling of large RNA for NMR structural studies. Nucleic Acids Research, 2008, 36, e89-e89.	6.5	45
32	Breaking pseudo-twofold symmetry in the poliovirus 3'-UTR Y-stem by restoring Watson-Crick base pairs. Rna, 2007, 13, 781-792.	1.6	14
33	Ligand-induced folding of the guanine-sensing riboswitch is controlled by a combined predetermined–induced fit mechanism. Rna, 2007, 13, 2202-2212.	1.6	75
34	An RNA conformational shift in recent H5N1 influenza A viruses. Bioinformatics, 2007, 23, 272-276.	1.8	38
35	Nonspecific Protein Adsorption at the Single Molecule Level Studied by Atomic Force Microscopy. Langmuir, 2007, 23, 9921-9923.	1.6	35
36	Macroscopic Hierarchical Surface Patterning of Porphyrin Trimers via Self-Assembly and Dewetting. Science, 2006, 314, 1433-1436.	6.0	311

#	Article	IF	CITATIONS
37	Chemical synthesis of picornaviral protein primers of RNA replication. Organic and Biomolecular Chemistry, 2006, 4, 3576.	1.5	11
38	Structural and functional integrity of the coxsackievirus B3 oriR: spacing between coaxial RNA helices. Journal of General Virology, 2006, 87, 689-695.	1.3	15
39	A GCUA tetranucleotide loop found in the poliovirus oriL by in vivo SELEX (un)expectedly forms a YNMG-like structure: Extending the YNMG family with GYYA. Rna, 2006, 12, 1671-1682.	1.6	16
40	AFM Studies of β-Sheet Block Copolymers at Solid Surfaces: High-Resolution Structures and Aggregation Dynamics. Australian Journal of Chemistry, 2006, 59, 560.	0.5	1
41	Structures of Non-Canonical Tandem Base Pairs in RNA Helices: Review. ChemInform, 2004, 35, no.	0.1	0
42	Novel application of sRNA: Stimulation of ribosomal frameshifting. Rna, 2004, 10, 1702-1703.	1.6	30
43	Structures of Non-canonical Tandem Base Pairs in RNA Helices: Review. Nucleosides, Nucleotides and Nucleic Acids, 2003, 22, 559-571.	0.4	14
44	Structure of the Pyrimidine-rich Internal Loop in the Poliovirus 3′-UTR: The Importance of Maintaining Pseudo-2-fold Symmetry in RNA Helices Containing Two Adjacent Non-canonical Base-pairs. Journal of Molecular Biology, 2003, 331, 759-769.	2.0	20
45	Solution structure of the pseudoknot of SRV-1 RNA, involved in ribosomal frameshifting 1 1Edited by I. Tinoco. Journal of Molecular Biology, 2001, 310, 1109-1123.	2.0	102
46	Title is missing!. Helvetica Chimica Acta, 2000, 83, 1278-1289.	1.0	14
47	Solution structure of a HNA–RNA hybrid. Chemistry and Biology, 2000, 7, 719-731.	6.2	66
48	Structure of the ribozyme substrate hairpin of Neurospora VS RNA: A close look at the cleavage site. Rna, 2000, 6, 1821-1832.	1.6	43
49	Title is missing!. Journal of Biomolecular NMR, 1998, 12, 423-433.	1.6	16
50	Structure of the 3'-hairpin of the TYMV pseudoknot: preformation in RNA folding. EMBO Journal, 1998, 17, 7498-7504.	3.5	11
51	New developments in structure determination of pseudoknots. Biopolymers, 1998, 48, 137-153.	1.2	48
52	NMR Structure of a Classical Pseudoknot: Interplay of Single- and Double-Stranded RNA. Science, 1998, 280, 434-438.	6.0	148
53	The detailed structure of tandem G·A mismatched base-pair motifs in RNA duplexes is context dependent. Journal of Molecular Biology, 1997, 271, 147-158.	2.0	53
54	RNA aptamers. Nature Structural Biology, 1997, 4, 597-600.	9.7	14

#	Article	IF	CITATIONS
55	The structure of the isolated, central hairpin of the HDV antigenomic ribozyme: novel structural features and similarity of the loop in the ribozyme and free in solution. EMBO Journal, 1997, 16, 3685-3692.	3.5	24
56	Unambiguous Structure Characterization of a DNAâ^'RNA Triple Helix by15N- and13C-Filtered NOESY Spectroscopyâ€. Biochemistry, 1996, 35, 1733-1739.	1.2	15
57	A Network of Heterogeneous Hydrogen Bonds in GNRA Tetraloops. Journal of Molecular Biology, 1996, 264, 968-980.	2.0	360
58	Sequential backbone assignment of uniformly 13C-labeled RNAs by a two-dimensional P(CC)H-TOCSY triple resonance NMR experiment. Journal of Biomolecular NMR, 1995, 5, 82-86.	1.6	38
59	Irradiated [15N]DNA as an Internal Standard for Analysis of Base-Oxidized DNA Constituents by Isotope Dilution Mass Spectrometry. Analytical Chemistry, 1995, 67, 399-404.	3.2	5
60	Assignment Strategies and Analysis of Cross-Peak Patterns and Intensities in the Three-Dimensional Homonuclear TOCSY-NOESY of RNA. Journal of Magnetic Resonance Series B, 1994, 103, 134-141.	1.6	28
61	Sequential Backbone Assignment in 13C-Labeled RNA via Through-Bond Coherence Transfer Using Three-Dimensional Triple Resonance Spectroscopy (1H,13C,31P) and Two-Dimensional Hetero TOCSY. Journal of the American Chemical Society, 1994, 116, 4983-4984.	6.6	59
62	Novel proton NMR assignment procedure for RNA duplexes. Journal of the American Chemical Society, 1991, 113, 4360-4361.	6.6	49
63	Nuclear magnetic resonance studies of the hammerhead ribozyme domain. Journal of Molecular Biology, 1991, 217, 113-124.	2.0	110
64	Structural features that give rise to the unusual stability of RNA hairpins containing GNRA loops. Science, 1991, 253, 191-194.	6.0	649
65	Conformational and thermodynamic effects of naturally occurring base methylations in a ribosomal RNA hairpin of Bacillus stearothermophilus. FEBS Journal, 1990, 188, 275-281.	0.2	9
66	Sequence-dependent structural variations of hammerhead RNA enzymes. Nucleic Acids Research, 1990, 18, 1103-1108.	6.5	80
67	ls there a special function for U Â∙ G basepairs in ribosomal RNA?. Biochimica Et Biophysica Acta Gene Regulatory Mechanisms, 1990, 1050, 14-17.	2.4	20
68	The 3′ Terminal Colicin Fragment ofEscherichia coli16S Ribosomal RNA. Conformational Details Revealed by Enzymic and Chemical Probing. Journal of Biomolecular Structure and Dynamics, 1988, 5, 951-963.	2.0	3
69	[12] Isolation and characterization of colicin fragments of bacterial 16S ribosomal RNA. Methods in Enzymology, 1988, 164, 188-200.	0.4	0
70	Circular dichroism and 500-MHz proton magnetic resonance studies of the interaction of Escherichia coli translational initiation factor 3 protein with the 16S ribosomal RNA 3' cloacin fragment. Biochemistry, 1986, 25, 2770-2777.	1.2	23
71	Phylogeny of the conserved 3′ terminal structure of the RNA of small ribosomal subunits. Nucleic Acids Research, 1984, 12, 2595-2604.	6.5	97
72	High-resolution proton magnetic resonance studies of the 3′-terminal colicin fragment of 16 S ribosomal RNA from Escherichia coli. Journal of Molecular Biology, 1983, 170, 939-956.	2.0	31

#	Article	IF	CITATIONS
73	The Conformation of a Conserved Stem-Loop Structure in Ribosomal RNA. Journal of Biomolecular Structure and Dynamics, 1983, 1, 371-381.	2.0	9
74	Calorimetric measurements of the destabilisation of a ribosomal RNA hairpin by dimethyiation of two adjacent adenosines. Nucleic Acids Research, 1983, 11, 203-210.	6.5	21
75	16S Ribosomal RNA of Escherichia coll contains a N2-methylguanosine at 27 nucleotides from the 3′ end. Nucleic Acids Research, 1981, 9, 2717-2725.	6.5	25
76	Destabilization of secondary structure in 16S ribosomal RNA by dimethylation of two adjacent adenosines. Nucleic Acids Research, 1981, 9, 4413-4422.	6.5	31
77	Adenosine dimethylation of 16S ribosomal RNA: effect of the methylgroups on local conformational stability as deduced from electrophoretic mobility of RNA fragments in denaturing polyacrylamide gels. Nucleic Acids Research, 1981, 9, 267-275.	6.5	21