Javier Dominguez

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1079786/publications.pdf

Version: 2024-02-01

122 papers	3,857 citations	35 h-index	190340 53 g-index
132	132	132	3138
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	CD200R family receptors are expressed on porcine monocytes and modulate the production of IL-8 and TNF-α triggered by TLR4 or TLR7 in these cells. Molecular Immunology, 2022, 144, 166-177.	1.0	1
2	CD9 expression in porcine blood CD4+ T cells delineates two subsets with phenotypic characteristics of central and effector memory cells. Developmental and Comparative Immunology, 2022, 133, 104431.	1.0	1
3	ldentification of Promiscuous African Swine Fever Virus T-Cell Determinants Using a Multiple Technical Approach. Vaccines, 2021, 9, 29.	2.1	18
4	Expression of CLEC4A in porcine tissues and leukocyte populations and characterization of mRNA splice variants. Molecular Immunology, 2021, 132, 157-164.	1.0	0
5	CD200R1 and CD200R1L expression is regulated during B cell development in swine and modulates the Ig production in response to the TLR7 ligand imiquimoid. PLoS ONE, 2021, 16, e0251187.	1.1	1
6	Porcine CLEC12B is expressed on alveolar macrophages and blood dendritic cells. Developmental and Comparative Immunology, 2020, 111, 103767.	1.0	5
7	Characterization of the Porcine CLEC12A and Analysis of Its Expression on Blood Dendritic Cell Subsets. Frontiers in Immunology, 2020, 11, 863.	2.2	8
8	Swine T-Cells and Specific Antibodies Evoked by Peptide Dendrimers Displaying Different FMDV T-Cell Epitopes. Frontiers in Immunology, 2020, 11, 621537.	2.2	8
9	Identification of an Immunosuppressive Cell Population during Classical Swine Fever Virus Infection and Its Role in Viral Persistence in the Host. Viruses, 2019, 11, 822.	1.5	9
10	Analysis of the expression of porcine CD200R1 and CD200R1L by using newly developed monoclonal antibodies. Developmental and Comparative Immunology, 2019, 100, 103417.	1.0	5
11	Kinetics of the expression of CD163 and CD107a in the lung and tonsil of pigs after infection with PRRSV-1 strains of different virulence. Veterinary Research Communications, 2019, 43, 187-195.	0.6	5
12	Impact of PRRSV strains of different in vivo virulence on the macrophage population of the thymus. Veterinary Microbiology, 2019, 232, 137-145.	0.8	9
13	TLR2, Siglec-3 and CD163 expressions on porcine peripheral blood monocytes are increased during sepsis caused by Haemophilus parasuis. Comparative Immunology, Microbiology and Infectious Diseases, 2019, 64, 31-39.	0.7	10
14	Phenotypic and functional characterization of porcine bone marrow monocyte subsets. Developmental and Comparative Immunology, 2018, 81, 95-104.	1.0	6
15	Interaction of PRRS virus with bone marrow monocyte subsets. Veterinary Microbiology, 2018, 219, 123-127.	0.8	3
16	Splenic CD163+ macrophages as targets of porcine reproductive and respiratory virus: Role of Siglecs. Veterinary Microbiology, 2017, 198, 72-80.	0.8	7
17	African swine fever virus infection in Classical swine fever subclinically infected wild boars. BMC Veterinary Research, 2017, 13, 227.	0.7	20
18	Live attenuated African swine fever viruses as ideal tools to dissect the mechanisms involved in viral pathogenesis and immune protection. Veterinary Research, 2015, 46, 135.	1.1	74

#	Article	IF	CITATIONS
19	Synthetic RNAs Mimicking Structural Domains in the Foot-and-Mouth Disease Virus Genome Elicit a Broad Innate Immune Response in Porcine Cells Triggered by RIG-I and TLR Activation. Viruses, 2015, 7, 3954-3973.	1.5	22
20	African swine fever virus infects macrophages, the natural host cells, via clathrin- and cholesterol-dependent endocytosis. Virus Research, 2015, 200, 45-55.	1.1	69
21	Molecular and functional characterization of porcine Siglec-3/CD33 and analysis of its expression in blood and tissues. Developmental and Comparative Immunology, 2015, 51, 238-250.	1.0	12
22	Molecular characterization of porcine Siglec-10 and analysis of its expression in blood and tissues. Developmental and Comparative Immunology, 2015, 48, 116-123.	1.0	15
23	Phenotypic and functional heterogeneity of CD169+ and CD163+ macrophages from porcine lymph nodes and spleen. Developmental and Comparative Immunology, 2014, 44, 44-49.	1.0	19
24	Molecular characterization and expression of porcine Siglec-5. Developmental and Comparative Immunology, 2014, 44, 206-216.	1.0	7
25	Expression of TLR4 in swine as assessed by a newly developed monoclonal antibody. Veterinary Immunology and Immunopathology, 2013, 153, 134-139.	0.5	2
26	Swine, human or avian influenza viruses differentially activates porcine dendritic cells cytokine profile. Veterinary Immunology and Immunopathology, 2013, 154, 25-35.	0.5	19
27	Analysis of chemokine receptor CCR7 expression on porcine blood T lymphocytes using a CCL19-Fc fusion protein. Developmental and Comparative Immunology, 2013, 39, 207-213.	1.0	16
28	Phenotypic characterisation of the monocyte subpopulations in healthy adult pigs and Salmonella-infected piglets by seven-colour flow cytometry. Research in Veterinary Science, 2013, 94, 240-245.	0.9	7
29	Antigen targeting to APC: From mice to veterinary species. Developmental and Comparative Immunology, 2013, 41, 153-163.	1.0	23
30	Changes in Macrophage Phenotype after Infection of Pigs with Haemophilus parasuis Strains with Different Levels of Virulence. Infection and Immunity, 2013, 81, 2327-2333.	1.0	41
31	Blocking porcine sialoadhesin improves extracorporeal porcine liver xenoperfusion with human blood. Xenotransplantation, 2013, 20, 239-251.	1.6	18
32	Immunization with DNA Vaccines Containing Porcine Reproductive and Respiratory Syndrome Virus Open Reading Frames 5, 6, and 7 May Be Related to the Exacerbation of Clinical Disease after an Experimental Challenge. Viral Immunology, 2013, 26, 93-101.	0.6	11
33	Differential interactions of virulent and non-virulent H. parasuis strains with naÃ-ve or swine influenza virus pre-infected dendritic cells. Veterinary Research, 2012, 43, 80.	1.1	18
34	Delivery of antigen to sialoadhesin or CD163 improves the specific immune response in pigs. Vaccine, 2011, 29, 4813-4820.	1.7	30
35	Immunomodulatory effect of swine CCL20 chemokine in DNA vaccination against CSFV. Veterinary Immunology and Immunopathology, 2011, 142, 243-251.	0.5	11
36	DNA immunization of pigs with foot-and-mouth disease virus minigenes: From partial protection to disease exacerbation. Virus Research, 2011, 157, 121-125.	1.1	14

#	Article	IF	Citations
37	Interaction of porcine conventional dendritic cells with swine influenza virus. Virology, 2011, 420, 125-134.	1.1	16
38	A DNA vaccine encoding foot-and-mouth disease virus B and T-cell epitopes targeted to class II swine leukocyte antigens protects pigs against viral challenge. Antiviral Research, 2011, 92, 359-363.	1.9	23
39	Increased numbers of myeloid and lymphoid IL-10 producing cells in spleen of pigs with naturally occurring postweaning multisystemic wasting syndrome. Veterinary Immunology and Immunopathology, 2010, 136, 305-310.	0.5	13
40	Porcine mononuclear phagocyte subpopulations in the lung, blood and bone marrow: dynamics during inflammation induced by <i>Actinobacillus pleuropneumoniae</i> . Veterinary Research, 2010, 41, 64.	1.1	21
41	Porcine monocyte subsets differ in the expression of CCR2 and in their responsiveness to CCL2. Veterinary Research, 2010, 41, 76.	1.1	34
42	Porcine myelomonocytic markers and cell populations. Developmental and Comparative Immunology, 2009, 33, 284-298.	1.0	73
43	Targeting to porcine sialoadhesin receptor receptor improves antigen presentation to T cells. Veterinary Research, 2009, 40, 14.	1.1	32
44	Porcine circovirus type 2 (PCV2) viral components immunomodulate recall antigen responses. Veterinary Immunology and Immunopathology, 2008, 124, 41-49.	0.5	54
45	Characterization of Interstitial Nephritis in Pigs with Naturally Occurring Postweaning Multisystemic Wasting Syndrome. Veterinary Pathology, 2008, 45, 12-18.	0.8	15
46	Expression of toll-like receptor 2 (TLR2) in porcine leukocyte subsets and tissues. Veterinary Research, 2008, 39, 13.	1.1	34
47	Cloning and expression of porcine CD163: its use for characterization of monoclonal antibodies to porcine CD163 and development of an ELISA to measure soluble CD163 in biological fluids. Spanish Journal of Agricultural Research, 2008, 6, 59.	0.3	16
48	Molecular cloning characterization and expression of porcine immunoreceptor SIRPα. Developmental and Comparative Immunology, 2007, 31, 307-318.	1.0	10
49	Phenotypic and functional characterization of porcine granulocyte developmental stages using two new markers. Developmental and Comparative Immunology, 2007, 31, 296-306.	1.0	16
50	Characterisation of porcine bone marrow progenitor cells identified by the anti-c-kit (CD117) monoclonal antibody 2B8/BM. Journal of Immunological Methods, 2007, 321, 70-79.	0.6	18
51	Molecular cloning, characterization and tissue expression of porcine Toll-like receptor 4. Developmental and Comparative Immunology, 2006, 30, 345-355.	1.0	26
52	Phenotypic and functional heterogeneity of porcine blood monocytes and its relation with maturation. Immunology, 2005, 114, 63-71.	2.0	76
53	Analysis of functional heterogeneity of porcine memory CD4+ T cells. Developmental and Comparative Immunology, 2005, 29, 479-488.	1.0	17
54	Differential expression of chemokine receptors and CD95 in porcine CD4+ T cell subsets. Veterinary Immunology and Immunopathology, 2005, 106, 295-301.	0.5	6

#	Article	IF	CITATIONS
55	Immunosuppression in postweaning multisystemic wasting syndrome affected pigs. Veterinary Microbiology, 2004, 98, 151-158.	0.8	129
56	In vitro differentiation of porcine blood CD163 \hat{a} and CD163+ monocytes into functional dendritic cells. Immunobiology, 2004, 209, 57-65.	0.8	39
57	2E3, a new marker that selectively identifies porcine CD4+ naive T cells. Developmental and Comparative Immunology, 2004, 28, 239-250.	1.0	13
58	In vitro effect of classical swine fever virus on a porcine aortic endothelial cell line. Veterinary Research, 2004, 35, 625-633.	1,1	9
59	Characterization of a novel activation antigen on porcine lymphocytes recognized by monoclonal antibody 5A6/8. Veterinary Research, 2004, 35, 339-348.	1.1	0
60	Expression of porcine CD163 on monocytes/macrophages correlates with permissiveness to African swine fever infection. Archives of Virology, 2003, 148, 2307-2323.	0.9	134
61	Immunohistochemical characterisation of PCV2 associate lesions in lymphoid and non-lymphoid tissues of pigs with natural postweaning multisystemic wasting syndrome (PMWS). Veterinary Immunology and Immunopathology, 2003, 94, 63-75.	0.5	83
62	Identification of porcine macrophages with monoclonal antibodies in formalin-fixed, paraffin-embedded tissues. Veterinary Immunology and Immunopathology, 2003, 94, 77-81.	0.5	18
63	A New Epitope on Swine CD5 Molecule Detected by Monoclonal Antibody 5F12/9. Hybridoma, 2003, 22, 179-182.	0.6	1
64	Isolation and characterization of immortalized porcine aortic endothelial cell lines. Veterinary Immunology and Immunopathology, 2002, 89, 91-98.	0.5	54
65	Phenotypic characterization of porcine IFN-Î ³ -producing lymphocytes by flow cytometry. Journal of Immunological Methods, 2002, 259, 171-179.	0.6	38
66	Changes in peripheral blood leukocyte populations in pigs with natural postweaning multisystemic wasting syndrome (PMWS). Veterinary Immunology and Immunopathology, 2001, 81, 37-44.	0.5	76
67	Immunohistological study of the immune system cells in paraffin-embedded tissues of conventional pigs. Veterinary Immunology and Immunopathology, 2001, 82, 245-255.	0.5	31
68	A porcine cell surface receptor identified by monoclonal antibodies to SWC3 is a member of the signal regulatory protein family and associates with protein-tyrosine phosphatase SHP-1. Tissue Antigens, 2000, 55, 342-351.	1.0	68
69	Molecular and functional characterization of porcine LFA-1 using monoclonal antibodies to CD11a and CD18. Xenotransplantation, 2000, 7, 258-266.	1.6	15
70	Induction of aggregation in porcine lymphoid cells by antibodies to CD46. Veterinary Immunology and Immunopathology, 2000, 73, 73-81.	0.5	3
71	Porcine reproductive and respiratory syndrome (PRRS) virus down-modulates TNF-α production in infected macrophages. Virus Research, 2000, 69, 41-46.	1.1	81
72	Phenotypic Characterization of Monocyte Subpopulations in the Pig. Immunobiology, 2000, 202, 82-93.	0.8	38

#	Article	IF	CITATIONS
73	Epitope mapping of 10 monoclonal antibodies against the pig analogue of human membrane cofactor protein (MCP). Immunology, 1999, 96, 663-670.	2.0	15
74	Monoclonal antibodies 2F6/8 and 2A10/8 recognize a porcine antigen (SWC7) expressed on B cells and activated T cells. Journal of Immunological Methods, 1999, 222, 1-11.	0.6	5
75	Analysis of cellular immune response in pigs recovered from porcine respiratory and reproductive syndrome infection. Virus Research, 1999, 64, 33-42.	1.1	106
76	Green fluorescent protein expressed by a recombinant vaccinia virus permits early detection of infected cells by flow cytometry. Journal of Immunological Methods, 1998, 220, 115-121.	0.6	39
77	Immunoprecipitation studies of monoclonal antibodies submitted to the Second International Swine CD Workshop. Veterinary Immunology and Immunopathology, 1998, 60, 229-236.	0.5	14
78	Analyses of monoclonal antibodies reacting with porcine wCD6: Results from the Second International Swine CD workshop. Veterinary Immunology and Immunopathology, 1998, 60, 285-289.	0.5	4
79	Report on the analyses of mAb reactive with porcine CD8 for the second international swine CD workshop. Veterinary Immunology and Immunopathology, 1998, 60, 291-303.	0.5	36
80	Workshop studies with monoclonal antibodies identifying a novel porcine differentiation antigen, SWC9. Veterinary Immunology and Immunopathology, 1998, 60, 343-349.	0.5	21
81	Analysis of the immunological cross reactivities of 213 well characterized monoclonal antibodies with specificities against various leucocyte surface antigens of human and 11 animal species. Veterinary Immunology and Immunopathology, 1998, 64, 1-13.	0.5	86
82	Monoclonal antibodies to a high molecular weight isoform of porcine CD45: biochemical and tissue distribution analyses. Veterinary Immunology and Immunopathology, 1997, 56, 151-162.	0.5	21
83	African swine fever virus-specific cytotoxic T lymphocytes recognize the 32 kDa immediate early protein (vp32). Virus Research, 1997, 49, 123-130.	1.1	34
84	Characterization of five monoclonal antibodies specific for swine class II major histocompatibility antigens and crossreactivity studies with leukocytes of domestic animals. Developmental and Comparative Immunology, 1997, 21, 311-322.	1.0	27
85	Monoclonal antibodies specific for porcine monocytes/macrophages: macrophage heterogeneity in the pig evidenced by the expression of surface antigens. Tissue Antigens, 1997, 49, 403-413.	1.0	37
86	The Second International Swine CD Workshop. Veterinary Immunology and Immunopathology, 1996, 54, 155-158.	0.5	25
87	Monoclonal antibody recognizes the $\hat{l}\pm$ chain of a porcine \hat{l}^22 integrin involved in adhesion and complement mediated phagocytosis. Journal of Immunological Methods, 1996, 195, 125-134.	0.6	28
88	Inhibition of IL-2R and SLA class II expression on stimulated lymphocytes by a suppressor activity found in homogenates of African swine fever virus infected cultures. Archives of Virology, 1995, 140, 1075-1085.	0.9	7
89	Applications of monoclonal antibodies in aquaculture. Biotechnology Advances, 1995, 13, 45-73.	6.0	9
90	Two different subpopulations of Ig-bearing cells in lymphoid organs of rainbow trout. Developmental and Comparative Immunology, 1995, 19, 79-86.	1.0	24

#	Article	IF	CITATIONS
91	Monoclonal antibodies to turbot (Scophthalmus maximus) immunoglobulins: characterization and applicability in immunoassays. Veterinary Immunology and Immunopathology, 1994, 41, 353-366.	0.5	45
92	Overview of the First International Workshop to Define Swine Leukocyte Cluster of Differentiation (CD) Antigens. Veterinary Immunology and Immunopathology, 1994, 43, 193-206.	0.5	71
93	Summary of workshop findings for porcine T-lymphocyte antigens. Veterinary Immunology and Immunopathology, 1994, 43, 219-228.	0.5	29
94	Analysis of monoclonal antibodies reactive with the porcine CD2 antigen. Veterinary Immunology and Immunopathology, 1994, 43, 229-232.	0.5	11
95	Analysis of monoclonal antibodies reactive with the porcine CD4 antigen. Veterinary Immunology and Immunopathology, 1994, 43, 233-236.	0.5	23
96	Analyses of monoclonal antibodies reactive with porcine CD5. Veterinary Immunology and Immunopathology, 1994, 43, 237-242.	0.5	17
97	Analyses of monoclonal antibodies reactive with porcine CD6. Veterinary Immunology and Immunopathology, 1994, 43, 243-247.	0.5	27
98	Analyses of mAb reactive with porcine CD8. Veterinary Immunology and Immunopathology, 1994, 43, 249-254.	0.5	46
99	Analysis of mAb reactive with the porcine SWC1. Veterinary Immunology and Immunopathology, 1994, 43, 255-258.	0.5	23
100	Monoclonal antibodies against the structural proteins of viral haemorrhagic septicaemia virus isolates. Journal of Fish Diseases, 1993, 16, 53-63.	0.9	34
101	Protein-a binding characteristics of rainbow trout (Oncorhynchus mykiss) immunoglobulins. Comparative Biochemistry and Physiology Part B: Comparative Biochemistry, 1993, 106, 173-180.	0.2	3
102	Characterisation of monoclonal antibodies against heavy and light chains of trout immunoglobulin. Fish and Shellfish Immunology, 1993, 3, 237-251.	1.6	34
103	Ontogeny of IgM and IgM-bearing cells in rainbow trout. Developmental and Comparative Immunology, 1993, 17, 419-424.	1.0	95
104	Quantification of low levels of rainbow trout immunoglobulin by enzyme immunoassay using two monoclonal antibodies. Veterinary Immunology and Immunopathology, 1993, 36, 65-74.	0.5	32
105	Analysis of T lymphocyte subsets proliferating in response to infective and UV-inactivated African swine fever viruses. Veterinary Microbiology, 1992, 33, 117-127.	0.8	28
106	Detection of African horsesickness virus in infected spleens by a sandwich ELISA using two monoclonal antibodies specific for VP7. Journal of Virological Methods, 1992, 38, 229-242.	1.0	40
107	Quantifying by monoclonal antibodies of specific IgG, IgM and IgA in the serum of minipigs experimentally infected with Actinobacillus pleuropneumoniae. Research in Veterinary Science, 1992, 53, 254-256.	0.9	1
108	Localization of African swine fever viral antigen, swine IgM, IgG and C1q in lung and liver tissues of experimentally infected pigs. Journal of Comparative Pathology, 1992, 107, 81-90.	0.1	18

#	Article	IF	CITATIONS
109	Trout immunoglobulin populations differing in light chains revealed by monoclonal antibodies. Molecular Immunology, 1991, 28, 1271-1277.	1.0	43
110	One-step purification of the major rainbow trout immunoglobulin. Veterinary Immunology and Immunopathology, 1991, 27, 383-391.	0.5	24
111	Rapid serotyping of infectious pancreatic necrosis virus by one-step enzyme-linked immunosorbent assay using monoclonal antibodies. Journal of Virological Methods, 1991, 31, 93-103.	1.0	11
112	Evaluation of an enzyme-linked immunosorbent assay to detect specific antibodies in pigs infested with the tick Ornithodoros erraticus (Argasidae). Veterinary Parasitology, 1990, 37, 145-153.	0.7	25
113	Epitope mapping of the major allergen from yellow mustard seeds, Sin a I. Molecular Immunology, 1990, 27, 143-150.	1.0	50
114	Use of monoclonal antibodies for detection of infectious pancreatic necrosis virus by the enzyme-linked immunosorbent assay (ELISA). Diseases of Aquatic Organisms, 1990, 8, 157-163.	0.5	34
115	Immunoglobulin heterogeneity in the rainbow trout, Salmo gairdneri Richardson. Journal of Fish Diseases, 1989, 12, 459-465.	0.9	39
116	Double Labeling Immunohistological Study of African Swine Fever Virus-infected Spleen and Lymph Nodes. Veterinary Pathology, 1988, 25, 193-198.	0.8	36
117	Primary structure of the major allergen of yellow mustard (Sinapis alba L.) seed, Sin a I. FEBS Journal, 1988, 177, 159-166.	0.2	136
118	Occupational asthma caused by cellulase. Journal of Allergy and Clinical Immunology, 1986, 77, 635-639.	1.5	50
119	Occupational asthma caused by African maple (Obeche) and Ramin: evidence of cross reactivity between these two woods. Clinical and Experimental Allergy, 1986, 16, 145-153.	1.4	32
120	EGG Hypersensitivity as Measured by RAST and a Reverse Enzyme-Immunoassay. Allergy: European Journal of Allergy and Clinical Immunology, 1984, 39, 529-533.	2.7	12
121	Asthma caused by African maple () wood dust. Journal of Allergy and Clinical Immunology, 1984, 74, 782-786.	1.5	39
122	Reverse Enzyme Immunoassay for the Determination of <i>Lolium perenne </i> IgE Antibodies. International Archives of Allergy and Immunology, 1983, 72, 184-187.	0.9	15