Michael J Rainbow

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/10797162/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	The Intercalated Segment: Does the Triquetrum Move in Synchrony With the Lunate?. Journal of Hand Surgery, 2022, 47, 762-771.	1.6	1
2	Modelling the complexity of the foot and ankle during human locomotion: the development and validation of a multi-segment foot model using biplanar videoradiography. Computer Methods in Biomechanics and Biomedical Engineering, 2022, 25, 554-565.	1.6	7
3	A statistical shape model of the tibia-fibula complex: sexual dimorphism and effects of age on reconstruction accuracy from anatomical landmarks. Computer Methods in Biomechanics and Biomedical Engineering, 2022, 25, 875-886.	1.6	8
4	Influence of Articular Geometry and Tibial Tubercle Location on Patellofemoral Kinematics and Contact Mechanics. Journal of Applied Biomechanics, 2022, 38, 58-66.	0.8	4
5	Patella Apex Influences Patellar Ligament Forces and Ratio. Journal of Biomechanical Engineering, 2021, 143, .	1.3	2
6	Knee extension moment arm variations relate to mechanical function in walking and running. Journal of the Royal Society Interface, 2021, 18, 20210326.	3.4	6
7	The extensibility of the plantar fascia influences the windlass mechanism during human running. Proceedings of the Royal Society B: Biological Sciences, 2021, 288, 20202095.	2.6	37
8	The Relationship Between the Tensile and the Torsional Properties of the Native Scapholunate Ligament and Carpal Kinematics. Journal of Hand Surgery, 2020, 45, 456.e1-456.e7.	1.6	1
9	Patellofemoral Mechanics: a Review of Pathomechanics and Research Approaches. Current Reviews in Musculoskeletal Medicine, 2020, 13, 326-337.	3.5	18
10	Three-dimensional scapular morphology is associated with rotator cuff tears and alters the abduction moment arm of the supraspinatus. Clinical Biomechanics, 2020, 78, 105091.	1.2	14
11	The Reliability of Foot and Ankle Bone and Joint Kinematics Measured With Biplanar Videoradiography and Manual Scientific Rotoscoping. Frontiers in Bioengineering and Biotechnology, 2020, 8, 106.	4.1	13
12	Regulation of foot and ankle quasi-stiffness during human hopping across a range of frequencies. Journal of Biomechanics, 2020, 108, 109853.	2.1	19
13	A Direct Comparison of Biplanar Videoradiography and Optical Motion Capture for Foot and Ankle Kinematics. Frontiers in Bioengineering and Biotechnology, 2019, 7, 199.	4.1	62
14	Differences in the Rotation Axes of the Scapholunate Joint During Flexion-Extension and Radial-Ulnar Deviation Motions. Journal of Hand Surgery, 2019, 44, 772-778.	1.6	7
15	The effect of articular geometry features identified using statistical shape modelling on knee biomechanics. Medical Engineering and Physics, 2019, 66, 47-55.	1.7	33
16	Factors contributing to glenoid baseplate micromotion in reverse shoulder arthroplasty: a biomechanical study. Journal of Shoulder and Elbow Surgery, 2019, 28, 648-653.	2.6	35
17	Relationship Between Lateral Patellar Stability and Tibial Tubercle Location for Varying Patellofemoral Geometries. Journal of Biomechanical Engineering, 2019, 141, .	1.3	4
18	Identification of good candidates for valgus bracing as a treatment for medial knee osteoarthritis. Journal of Orthopaedic Research, 2018, 36, 351-356.	2.3	4

MICHAEL J RAINBOW

#	Article	IF	CITATIONS
19	Tensile and Torsional Structural Properties ofÂtheÂNativeÂScapholunate Ligament. Journal of Hand Surgery, 2018, 43, 864.e1-864.e7.	1.6	7
20	Does Wrist Laxity Influence Three-Dimensional Carpal Bone Motion?. Journal of Biomechanical Engineering, 2018, 140, .	1.3	4
21	Operator Bias Errors Are Reduced Using Standing Marker Alignment Device for Repeated Visit Studies. Journal of Biomechanical Engineering, 2018, 140, .	1.3	6
22	Influence of the windlass mechanism on arch-spring mechanics during dynamic foot arch deformation. Journal of the Royal Society Interface, 2018, 15, 20180270.	3.4	59
23	Principal components of wrist circumduction from electromagnetic surgical tracking. International Journal of Computer Assisted Radiology and Surgery, 2017, 12, 315-324.	2.8	1
24	Correcting waveform bias using principal component analysis: Applications in multicentre motion analysis studies. Gait and Posture, 2017, 51, 153-158.	1.4	3
25	Comparison of hierarchical and six degrees-of-freedom marker sets in analyzing gait kinematics. Computer Methods in Biomechanics and Biomedical Engineering, 2016, 19, 199-207.	1.6	11
26	Subject-Specific Carpal Ligament Elongation in Extreme Positions, Grip, and the Dart Thrower's Motion. Journal of Biomechanical Engineering, 2015, 137, 111006.	1.3	16
27	In vivo recruitment patterns in the anterior oblique and dorsoradial ligaments of the first carpometacarpal joint. Journal of Biomechanics, 2015, 48, 1893-1898.	2.1	30
28	In Vivo Kinematics of the Thumb Carpometacarpal Joint During Three Isometric Functional Tasks. Clinical Orthopaedics and Related Research, 2014, 472, 1114-1122.	1.5	64
29	Reduction in ground reaction force variables with instructed barefoot running. Journal of Sport and Health Science, 2014, 3, 143-151.	6.5	56
30	Landing pattern and vertical loading rates during first attempt of barefoot running in habitual shod runners. Human Movement Science, 2014, 34, 120-127.	1.4	59
31	Quality of internet health information on thumb carpometacarpal joint arthritis. Rhode Island Medical Journal (2013), 2014, 97, 31-5.	0.2	3
32	In Vivo Kinematics of the Scaphoid, Lunate, Capitate, and Third Metacarpal in Extreme Wrist Flexion and Extension. Journal of Hand Surgery, 2013, 38, 278-288.	1.6	64
33	A thumb carpometacarpal joint coordinate system based on articular surface geometry. Journal of Biomechanics, 2013, 46, 1031-1034.	2.1	36
34	Automatic determination of an anatomical coordinate system for a three-dimensional model of the human patella. Journal of Biomechanics, 2013, 46, 2093-2096.	2.1	17
35	Kinematic differences between optical motion capture and biplanar videoradiography during a jump–cut maneuver. Journal of Biomechanics, 2013, 46, 567-573.	2.1	110
36	Elastic energy storage in the shoulder and the evolution of high-speed throwing in Homo. Nature, 2013, 498, 483-486.	27.8	282

MICHAEL J RAINBOW

#	Article	IF	CITATIONS
37	Elongation of the Dorsal Carpal Ligaments: A Computational Study of In Vivo Carpal Kinematics. Journal of Hand Surgery, 2012, 37, 1393-1399.	1.6	16
38	Automatic determination of anatomical coordinate systems for three-dimensional bone models of the isolated human knee. Journal of Biomechanics, 2010, 43, 1623-1626.	2.1	91
39	Implications of using hierarchical and six degree-of-freedom models for normal gait analyses. Gait and Posture, 2010, 31, 57-63.	1.4	46
40	Gender Differences in Capitate Kinematics are Eliminated After Accounting for Variation in Carpal Size. Journal of Biomechanical Engineering, 2008, 130, 041003.	1.3	23