Wenjuan Liao

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1079705/publications.pdf

Version: 2024-02-01

		1163117	1588992
8	436	8	8
papers	citations	h-index	g-index
8	8	8	290
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Ligand-Enhanced Electron Utilization for Trichloroethylene Degradation by [·] OH during Sediment Oxygenation. Environmental Science & Eamp; Technology, 2021, 55, 7044-7051.	10.0	32
2	Oxidative Degradation of Organic Contaminants by FeS in the Presence of O ₂ . Environmental Science & Environmental S	10.0	76
3	Contaminant Degradation by •OH during Sediment Oxygenation: Dependence on Fe(II) Species. Environmental Science & Technology, 2020, 54, 2975-2984.	10.0	101
4	Effect of in situ generated iron oxyhydroxide coatings on FeS oxygenation and resultant hydroxyl radical production for contaminant degradation. Chemical Engineering Journal, 2020, 394, 124961.	12.7	22
5	Effect of Coexisting Fe(III) (oxyhydr)oxides on Cr(VI) Reduction by Fe(II)-Bearing Clay Minerals. Environmental Science & Envi	10.0	49
6	Sulfide drives hydroxyl radicals production in oxic ferric oxyhydroxides environments. Chemosphere, 2019, 234, 450-460.	8.2	15
7	Anoxic storage regenerates reactive Fe(II) in reduced nontronite with short-term oxidation. Geochimica Et Cosmochimica Acta, 2019, 257, 96-109.	3.9	23
8	Mechanisms of electron transfer from structrual Fe(II) in reduced nontronite to oxygen for production of hydroxyl radicals. Geochimica Et Cosmochimica Acta, 2018, 223, 422-436.	3.9	118