## Jennifer Dy

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/10796734/publications.pdf Version: 2024-02-01



IENNIEED DV

| #  | Article                                                                                                                                                                                       | IF  | CITATIONS |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 1  | Monitoring Motor Fluctuations in Patients With Parkinson's Disease Using Wearable Sensors. IEEE<br>Transactions on Information Technology in Biomedicine, 2009, 13, 864-873.                  | 3.6 | 477       |
| 2  | Automated Diagnosis of Plus Disease in Retinopathy of Prematurity Using Deep Convolutional Neural<br>Networks. JAMA Ophthalmology, 2018, 136, 803.                                            | 1.4 | 442       |
| 3  | Emotion fingerprints or emotion populations? A meta-analytic investigation of autonomic features of emotion categories Psychological Bulletin, 2018, 144, 343-393.                            | 5.5 | 287       |
| 4  | Evaluation of a deep learning image assessment system for detecting severe retinopathy of prematurity. British Journal of Ophthalmology, 2019, 103, 580-584.                                  | 2.1 | 114       |
| 5  | Learning from multiple annotators with varying expertise. Machine Learning, 2014, 95, 291-327.                                                                                                | 3.4 | 100       |
| 6  | Monitoring Disease Progression With a Quantitative Severity Scale for Retinopathy of Prematurity<br>Using Deep Learning. JAMA Ophthalmology, 2019, 137, 1022.                                 | 1.4 | 81        |
| 7  | A Quantitative Severity Scale for Retinopathy of Prematurity Using Deep Learning to Monitor Disease<br>Regression After Treatment. JAMA Ophthalmology, 2019, 137, 1029.                       | 1.4 | 63        |
| 8  | Home monitoring of patients with Parkinson's disease via wearable technology and a web-based application. , 2010, 2010, 4411-4.                                                               |     | 55        |
| 9  | Enabling precision rehabilitation interventions using wearable sensors and machine learning to track motor recovery. Npj Digital Medicine, 2020, 3, 121.                                      | 5.7 | 55        |
| 10 | Context-aware experience sampling reveals the scale of variation in affective experience. Scientific Reports, 2020, 10, 12459.                                                                | 1.6 | 33        |
| 11 | Physiological indices of challenge and threat: A dataâ€driven investigation of autonomic nervous system reactivity during an active coping stressor task. Psychophysiology, 2019, 56, e13454. | 1.2 | 28        |
| 12 | Finding a â€~New' Needle in the Haystack: Unseen Radio Detection in Large Populations Using Deep<br>Learning. , 2019, , .                                                                     |     | 25        |
| 13 | Comparing supervised and unsupervised approaches to emotion categorization in the human brain, body, and subjective experience. Scientific Reports, 2020, 10, 20284.                          | 1.6 | 25        |
| 14 | Longitudinal monitoring of patients with Parkinson's disease via wearable sensor technology in the home setting. , 2011, 2011, 1552-5.                                                        |     | 23        |
| 15 | Nature of Emotion Categories: Comment on Cowen and Keltner. Trends in Cognitive Sciences, 2018, 22, 97-99.                                                                                    | 4.0 | 19        |
| 16 | Classification and comparison via neural networks. Neural Networks, 2019, 118, 65-80.                                                                                                         | 3.3 | 18        |
| 17 | Deep Learning on Multimodal Sensor Data at the Wireless Edge for Vehicular Network. IEEE<br>Transactions on Vehicular Technology, 2022, 71, 7639-7655.                                        | 3.9 | 16        |
| 18 | Investigating the relationship between emotional granularity and cardiorespiratory physiological activity in daily life. Psychophysiology, 2021, 58, e13818.                                  | 1.2 | 14        |

Jennifer Dy

| #  | Article                                                                                                                                                                         | IF  | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 19 | Deep Bayesian Unsupervised Lifelong Learning. Neural Networks, 2022, 149, 95-106.                                                                                               | 3.3 | 14        |
| 20 | Open-World Class Discovery with Kernel Networks. , 2020, , .                                                                                                                    |     | 12        |
| 21 | Interpretable Clustering via Discriminative Rectangle Mixture Model. , 2016, , .                                                                                                |     | 11        |
| 22 | Subject-specific abnormal region detection in traumatic brain injury using sparse model selection on high dimensional diffusion data. Medical Image Analysis, 2017, 37, 56-65.  | 7.0 | 11        |
| 23 | Learn-Prune-Share for Lifelong Learning. , 2020, , .                                                                                                                            |     | 10        |
| 24 | MAC ID Spoofing-Resistant Radio Fingerprinting. , 2019, , .                                                                                                                     |     | 9         |
| 25 | Machine learning-based biomarkers identification from toxicogenomics – Bridging to regulatory relevant phenotypic endpoints. Journal of Hazardous Materials, 2022, 423, 127141. | 6.5 | 9         |
| 26 | Effective Virtual Machine Monitor Intrusion Detection Using Feature Selection on Highly Imbalanced Data. , 2010, , .                                                            |     | 5         |
| 27 | A Hybrid Approach to Identifying Key Factors in Environmental Health Studies. , 2018, , .                                                                                       |     | 5         |
| 28 | Turning subtypes into disease axes to improve prediction of COPD progression. Thorax, 2019, 74, 906-909.                                                                        | 2.7 | 3         |
| 29 | A Novel Feature Selection for Intrusion Detection in Virtual Machine Environments. , 2011, , .                                                                                  |     | 2         |
| 30 | Feature Selection Metric Using AUC Margin for Small Samples and Imbalanced Data Classification Problems. , 2011, , .                                                            |     | 2         |
| 31 | A Computational Neural Model for Mapping Degenerate Neural Architectures. Neuroinformatics, 2022, 20, 965-979.                                                                  | 1.5 | 2         |
| 32 | Quantitative synaptic vesicle imaging for evaluating neuron activities in neurodegenerative diseases. , 2011, , .                                                               |     | 0         |
| 33 | Editorial to the Special Issue of Selected Papers of SDM 2013. Statistical Analysis and Data Mining, 2014, 7, 227-228.                                                          | 1.4 | 0         |
| 34 | Interactive Kernel Dimension Alternative Clustering on GPUs. , 2018, , .                                                                                                        |     | 0         |
| 35 | Associating Exposures to Adverse Health Outcomes using Decision Trees. , 2020, , .                                                                                              |     | 0         |