
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1079628/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Enhanced energy-storage performance of Pb0.925La0.05Zr0.95Ti0.05@xwt%SiO2 composite ceramics. Journal of Alloys and Compounds, 2022, 890, 161869.	5.5	18
2	Effect of core size on the magnetoelectric properties of Cu0.8Co0.2Fe2O4@Ba0.8Sr0.2TiO3 ceramics. Journal of Physics and Chemistry of Solids, 2022, 160, 110314.	4.0	25
3	Effect of holding time on microstructure, ferroelectric and energy-storage properties of Pb0.925La0.05Zr0.95Ti0.05O3@SiO2 ceramics. Journal of Alloys and Compounds, 2022, 896, 162932.	5.5	21
4	Effect of sintering temperatures on the magnetoelectric properties of Bi0.78La0.08Sm0.14Fe0.85Ti0.15O3 ceramics. Processing and Application of Ceramics, 2022, 16, 89-96.	0.8	0
5	Influence of calcination temperature on structure and multiferroic properties of barium ferrite ceramics. Processing and Application of Ceramics, 2022, 16, 106-114.	0.8	1
6	Dielectric, ferroelectric and piezoelectric behaviors of thulium-doped KNN ceramics fabricated by microwave sintering. Journal of Materials Science: Materials in Electronics, 2022, 33, 17258-17271.	2.2	0
7	Cooling rate-dependent microstructure and electrical properties of BCZT ceramics. Materials Science in Semiconductor Processing, 2022, 150, 106950.	4.0	5
8	Enhancement in hybrid improper ferroelectricity of Ca3Ti2O7 ceramics by a two-stage sintering. Materials Chemistry and Physics, 2021, 258, 124001.	4.0	9
9	Effect of Al2O3 Addition on Magnetoelectric Properties of Ni0.5Zn0.5Fe2O4/Ba0.8Sr0.2TiO3 Composite Ceramics. Journal of Electronic Materials, 2021, 50, 2822-2830.	2.2	4
10	Influence of sintering method on microstructure, electrical and magnetic properties of BiFeO3–BaTiO3 solid solution ceramics. Materials Today Chemistry, 2021, 20, 100419.	3.5	13
11	Microstructure, Magnetodielectric, and Multiferroic Properties of <i>x</i> Co _{0.8} Cu _{0.2} Fe ₂ O _{4â^<i>y</i>} (0.8BaTiO _{3Composite Ceramics. Advanced Engineering Materials, 2021, 23, 2100410.}	b> â €'0.2∣	BiA kO ₃
12	Optimization of sintering process and enhanced hybrid improper ferroelectricity of Ca3Ti2O7 ceramics fabricated by an acetic acid sol–gel method. Journal of Materials Science: Materials in Electronics, 2021, 32, 24328-24341.	2.2	3
13	Improvement of magnetoelectric coupling effect in Ba0.8Sr0.2TiO3-Co0.5Cu0.5Fe2O4 multiferroic fluids by tuning the composition. Materials Today Chemistry, 2021, 21, 100511.	3.5	18
14	Effect of solution concentration on magnetoelectric properties of barium ferrite ceramics. Applied Physics A: Materials Science and Processing, 2021, 127, 1.	2.3	1
15	Dielectric, ferroelectric, magnetic and multiferroic properties of xNi0.15Cu0.25Zn0.6Fe2O4-(1-x)Ba0.85Ca0.15Zr0.1Ti0.9O3 composite ceramics. Applied Physics A: Materials Science and Processing, 2021, 127, 1.	2.3	2
16	Influence of IrO2 addition on magnetoelectric properties of Ni0.5Zn0.5Fe2O4/Ba0.8Sr0.2TiO3 composite ceramics. Journal of Materials Science: Materials in Electronics, 2020, 31, 2436-2445.	2.2	1
17	Dielectric, ferroelectric and magnetoelectric properties of in-situ synthesized CoFe2O4/BaTiO3 composite ceramics. Ceramics International, 2020, 46, 9154-9160.	4.8	22
18	Effects of Sintering Method and BiAlO ₃ Dopant on Dielectric Relaxation and Energy Storage Properties of BaTiO ₃ –BiYbO ₃ Ceramics. Physica Status Solidi (A) Applications and Materials Science, 2020, 217, 1900721.	1.8	8

#	Article	IF	CITATIONS
19	Enhancement of magnetoelectric properties and coupling coefficient of Co1â^'xCuxFe2O4/Ba0.8Sr0.2TiO3 composite liquid. Journal of Materials Science: Materials in Electronics, 2020, 31, 885-895.	2.2	14
20	Effect of sintering temperature on magnetoelectric properties of PbTiO3/NiFe2O4 composite ceramics. Journal of Asian Ceramic Societies, 2020, 8, 1206-1215.	2.3	10
21	Dielectric and multiferroic properties of 0.8BaTiO3-0.2BiAlO3/Co0.8Cu0.2Fe2O4 composite ceramics. Journal of Materials Science: Materials in Electronics, 2020, 31, 13730-13745.	2.2	4
22	Remarkable enhancement in hybrid improper ferroelectricity of Ca3Ti2O7 ceramics by a simple sol-gel process. Materials Letters, 2020, 278, 128447.	2.6	8
23	Effect of particle size on magnetodielectric and magnetoelectric coupling effect of CoFe2O4@BaTiO3 composite fluids. Journal of Materials Science: Materials in Electronics, 2020, 31, 9026-9036.	2.2	12
24	Effects of oxygen partial pressure on the electrical properties and phase transitions in (Ba,Ca)(Ti,Zr)O3 ceramics. Journal of Materials Science, 2020, 55, 9972-9992.	3.7	29
25	Enhanced ferroelectric and piezoelectric responses of (Ba0.85Ca0.15)(Zr0.1Ti0.9)O3 ceramics by Tm3+ amphoteric substitution. Materials Chemistry and Physics, 2020, 252, 123242.	4.0	18
26	Structure, dielectric, piezoelectric, antiferroelectric and magnetic properties of CoFe2O4–PbZr0.52Ti0.48O3 composite ceramics. Materials Chemistry and Physics, 2020, 249, 123144.	4.0	33
27	Study of structural, optical and enhanced multiferroic properties of Ni doped BFO thin films synthesized by sol-gel method. Journal of Alloys and Compounds, 2020, 831, 154857.	5.5	47
28	Study on magnetoelectric properties of Ni0.5Zn0.5Fe2O4/Ba0.8Sr0.2TiO3 composite ceramics based on Bi2O3 as combustion aid. Journal of Materials Science: Materials in Electronics, 2020, 31, 4073-4082.	2.2	7
29	Effect of volume fraction on magnetoelectric coupling effect of Co0.1Cu0.9Fe2O4/Ba0.8Sr0.2TiO3 composite liquid. Applied Physics A: Materials Science and Processing, 2020, 126, 1.	2.3	11
30	Effects of Sintering Method and BaTiO3 Dopant on the Microstructure and Electric Properties of Bi (Fe0.9Al0.05Yb0.05) O3-Based Ceramics. Journal of Electronic Materials, 2020, 49, 2608-2616.	2.2	2
31	Synergistic effect of grain size and phase boundary on energy storage performance and electric properties of BCZT ceramics. Journal of Materials Science: Materials in Electronics, 2020, 31, 9167-9175.	2.2	35
32	Enhanced the dielectric relaxation characteristics of BaTiO3 ceramic doped by BiFeO3 and synthesized by the microwave sintering method. Materials Chemistry and Physics, 2020, 250, 123034.	4.0	34
33	Effects of molar ratio on dielectric, ferroelectric and magnetic properties of Ni0.5Zn0.5Fe2O4-BaTiO3 composite ceramics. Processing and Application of Ceramics, 2020, 14, 91-101.	0.8	8
34	Effect of sintering temperature on magnetoelectric coupling in 0.2Ni0.9Zn0.1Fe2O4-0.8Ba0.9Sr0.1TiO3 composite ceramics. Processing and Application of Ceramics, 2020, 14, 336-345.	0.8	10
35	Effect of annealing atmosphere on structural and multiferroic properties of BiFeO3 thin film prepared by RF magnetron sputtering. Journal of Materials Science: Materials in Electronics, 2019, 30, 16502-16509.	2.2	9
36	Effect of molar ratio on the microstructure, dielectric and electromagnetic properties of BaTiO3/CoFe2O4 ceramic. Materials Research Express, 2019, 6, 116317.	1.6	4

#	Article	IF	CITATIONS
37	Electric fatigue of BCZT ceramics sintered in different atmospheres. Applied Physics A: Materials Science and Processing, 2019, 125, 1.	2.3	26
38	Effect of Ti doping on the dielectric, ferroelectric and magnetic properties of Bi _{0.86} La _{0.08} Sm _{0.14} FeO ₃ ceramics. Materials Research Express, 2019, 6, 106317.	1.6	9
39	Effects of BiAlO3 dopant and sintering method on microstructure, dielectric relaxation characteristic and ferroelectric properties of BaTiO3-based ceramics. Applied Physics A: Materials Science and Processing, 2019, 125, 1.	2.3	13
40	Anomalous Magnetoelectric Coupling Effect of CoFe ₂ O ₄ –BaTiO ₃ Binary Mixed Fluids. ACS Applied Electronic Materials, 2019, 1, 1120-1132.	4.3	31
41	Microstructure, dielectric and enhanced multiferroic properties of Fe3O4/PbZr0.52Ti0.48O3 composite ceramics. Journal of Materials Science: Materials in Electronics, 2019, 30, 12295-12306.	2.2	1
42	Enhanced multiferroic properties of Co0.5Ni0.5Fe2O4/Ba0.85Sr0.15TiO3 composites based on particle size effect. Journal of Materials Science: Materials in Electronics, 2019, 30, 10256-10273.	2.2	19
43	Strong magnetic properties and enhanced coupling effect by tailoring the molar ratio in BaTiO3/Co0.5Mg0.3Zn0.2Fe2O4 composite ceramics. Journal of Materials Science: Materials in Electronics, 2019, 30, 11563-11575.	2.2	3
44	Effects of glass additives on microstructure, dielectric and ferroelectric properties of BaTiO3–BiYbO3 based ceramics. Materials Research Express, 2019, 6, 086319.	1.6	1
45	Effect of Magnetic Phase on Structural and Multiferroic Properties of Ni1â^'xZnxFe2O4/BaTiO3 Composite Ceramics. Journal of Electronic Materials, 2019, 48, 4806-4817.	2.2	42
46	A comparative study of the dielectric, ferroelectric and anomalous magnetic properties of Mn0.5Mg0.5Fe2O4/Ba0.8Sr0.2Ti0.9Zr0.1O3 composite ceramics. Materials Chemistry and Physics, 2019, 232, 428-437.	4.0	36
47	Enhanced piezoelectric response of (Ba,Ca)(Ti, Zr)O3 ceramics by super large grain size and construction of phase boundary. Journal of Alloys and Compounds, 2019, 794, 542-552.	5.5	60
48	Enhancement of magnetoelectric properties of (1-x)Mn0.5Zn0.5Fe2O4-xBa0.85Sr0.15Ti0.9Hf0.1O3 composite ceramics. Journal of Alloys and Compounds, 2019, 795, 501-512.	5.5	140
49	The electronic structure and optical properties of Ca ₃ (Mn1â ^{~*} xTi _{<i>x</i>}) ₂ O ₇ from first-principle calculations. Journal of Advanced Dielectrics, 2019, 09, 1950007.	2.4	6
50	Micro-Area Ferroelectric, Piezoelectric and Conductive Properties of Single BiFeO3 Nanowire by Scanning Probe Microscopy. Nanomaterials, 2019, 9, 190.	4.1	53
51	Microstructure, Enhanced Relaxor-Like Behavior and Electric Properties of (Ba0.85Ca0.15)(Zr0.1â^'xHfxTi0.9)O3 Ceramics. Journal of Electronic Materials, 2019, 48, 3239-3247.	2.2	11
52	A comparative study on the structural, dielectric, ferroelectric and magnetic properties of CoFe2O4/PbZr0.52Ti0.48O3 multiferroic composite with different molar ratios. Journal of Physics Communications, 2019, 3, 125010.	1.2	11
53	Effects of sintering time on microstructure and electric properties of Ba0.7Sr0.3TiO3 ceramics. Ferroelectrics, 2019, 551, 5-16.	0.6	0
54	Microstructure and ferroelectric properties of (Ca1â^'xSrx)3(Ti1â^'yMny)2O7 ceramics. Journal of Materials Science: Materials in Electronics, 2019, 30, 2177-2185.	2.2	10

#	Article	IF	CITATIONS
55	Magnetocapacitance and magnetoelectric coupling effect of Ni _{0.5} Cu _{0.5} Fe ₂ O ₄ /BaTiO ₃ mixed multiferroic fluids. Materials Research Express, 2019, 6, 026308.	1.6	21
56	A comparative study on the structural, dielectric and multiferroic properties of Co0.6Cu0.3Zn0.1Fe2O4/Ba0.9Sr0.1Zr0.1Ti0.9O3 composite ceramics. Composites Part B: Engineering, 2019, 166, 204-212.	12.0	158
57	Dielectric and ferroelectric properties of LaFeO3 particles derived from metal organic frameworks precursor. Ceramics International, 2019, 45, 1825-1830.	4.8	15
58	The Study of Microstructure, Dielectric and Multiferroic Properties of (1 â^` x) Co0.8Cu0.2Fe2O4-xBa0.6Sr0.4TiO3 Composites. Journal of Electronic Materials, 2019, 48, 386-400.	2.2	27
59	Microstructure, enhanced electric and magnetic properties of Bi0.9La0.1FeO3 ceramics prepared by microwave sintering. Journal of Alloys and Compounds, 2019, 774, 61-68.	5.5	23
60	Influence of molar ratio on dielectric, ferroelectric and magnetic properties of Co0.5Mg0.5Fe2O4/Ba0.85Sr0.15TiO3 composite ceramics. Processing and Application of Ceramics, 2019, 13, 257-268.	0.8	2
61	Microstructure and Electric Properties of (Sr1â´'xCax)3Sn2O7 Ceramics with Ruddlesden-Popper Structure. , 2018, , 189-197.		1
62	Influences of La on Optical and Electric Properties of BiFeO3 Thin Films. , 2018, , 171-180.		0
63	Effects of Sintering Temperature on Microstructure, Electric Properties of Ba0.7Sr0.3TiO3 Ceramics. , 2018, , 587-598.		1
64	Microstructure, enhanced piezoelectric, optical and magnetic properties of Mn substituted BiFeO3 film synthesized by chemical method. Journal of Materials Science: Materials in Electronics, 2018, 29, 6870-6878.	2.2	11
65	Electric Field–Induced Magnetization Rotation in Magnetoelectric Multiferroic Fluids. Advanced Electronic Materials, 2018, 4, 1800030.	5.1	69
66	Photovoltaic effect in rhombohedral and tetragonal phase BiFeO3 ferroelectric thin films. Integrated Ferroelectrics, 2018, 192, 146-153.	0.7	1
67	Effect of annealing temperature on crystalline structure and domains configuration of BiFeO3films. Ferroelectrics, 2018, 536, 122-131.	0.6	2
68	Microstructure, dielectric and ferroelectric properties of (1â^'x) BaTiO3–xBiYbO3 ceramics fabricated by conventional and microwave sintering methods. Journal of Materials Science: Materials in Electronics, 2018, 29, 20017-20032.	2.2	14
69	Effects of sintering method and BiFeO3 dopant on the dielectric and ferroelectric properties of BaTiO3–BiYbO3 based solid solution ceramics. Ceramics International, 2018, 44, 16880-16889.	4.8	28
70	Effect of molar ratio on the microstructure, dielectric and multiferroic properties of Ni0.5Zn0.5Fe2O4-Pb0.8Zr0.2TiO3 nanocomposite. Journal of Materials Science: Materials in Electronics, 2018, 29, 16226-16237.	2.2	45
71	Influence of core size on the multiferroic properties of CoFe2O4@BaTiO3 core shell structured composites. Ceramics International, 2018, 44, S84-S87.	4.8	109
72	Strong magnetoelectric coupling effect in BaTiO ₃ @CoFe ₂ O ₄ magnetoelectric multiferroic fluids. Nanoscale, 2018, 10, 11750-11759.	5.6	97

#	Article	IF	CITATIONS
73	Effects of sintering temperature and holding time on the microstructure and electric properties of Ba(Zr0.3Ti0.7)O3 ceramics. Processing and Application of Ceramics, 2018, 12, 45-55.	0.8	11
74	Influence of Co ion doping on the microstructure, magnetic and dielectric properties of Ni1-xCoxFe2O4 ceramics. Processing and Application of Ceramics, 2018, 12, 335-341.	0.8	5
75	Dielectric, ferroelectric and magnetic properties of Bi0.78La0.08Sm0.14Fe0.85Ti0.15O3 ceramics prepared at different sintering conditions. Processing and Application of Ceramics, 2018, 12, 394-402.	0.8	7
76	Microstructural Regulation and Optical Performance of Bismuth Ferrite Nanowires by Precipitant. , 2018, , 199-205.		0
77	Effects of Sn doping on the microstructure and dielectric and ferroelectric properties of Ba(Zr0.2Ti0.8)O3 ceramics. Journal of Materials Science: Materials in Electronics, 2017, 28, 8177-8185.	2.2	11
78	Thickness Dependence of Photovoltaic Effect in BiFeO3 Thin Films Based on Asymmetric Structures. Journal of Electronic Materials, 2017, 46, 2373-2378.	2.2	26
79	Study on the structure and properties of (1-x) BiYbO3-xBaTiO3 ceramics synthesized by sol–gel method. Ferroelectrics, 2017, 507, 127-138.	0.6	1
80	Effects of annealing atmosphere on microstructure, electrical properties and domain structure of BiFeO3 thin films. Journal of Materials Science: Materials in Electronics, 2017, 28, 12039-12047.	2.2	7
81	Electric Control of the Hall effect in Pt/Bi0.9La0.1FeO3 bilayers. Scientific Reports, 2016, 6, 20330.	3.3	34
82	Sol-Gel Synthesis and Characterization of (1– <i>x</i> – <i>y</i>)BiYbO ₃ - <i>x</i> LiNbO ₃ - <i>y</i> BaTiO ₃ Ceramics. Transactions of the Indian Ceramic Society, 2016, 75, 220-224.	1.0	1
83	Effects of annealing temperature and template diameter on the microstructures of BiFeO3nanowires. Ferroelectrics, 2016, 505, 184-189.	0.6	1
84	The growth, enhanced optical and magnetic response of BiFeO3 nanorods synthesized by hydrothermal method. Journal of Materials Science: Materials in Electronics, 2016, 27, 8242-8246.	2.2	6
85	Anomalous Hall effect based on Pt/Bi0.9La0.1FeO3bilayers. Japanese Journal of Applied Physics, 2016, 55, 045801.	1.5	0
86	Enhanced ferroelectric photovoltaic effect based on converging depolarization field. Materials Research Bulletin, 2016, 84, 93-98.	5.2	11
87	Effect of processing parameters on the structural, electrical and magnetic properties of BFO thin film synthesized via RF magnetron sputtering. Journal of Alloys and Compounds, 2016, 684, 510-515.	5.5	24
88	Switchable photovoltaic effect in Au/Bi0.9La0.1FeO3/La0.7Sr0.3MnO3 heterostructures. Materials Chemistry and Physics, 2016, 181, 277-283.	4.0	10
89	Enhanced photovoltaic effect of La0.8Sr0.2MnO3â [∽] δ thin films based on electric field training. Materials Letters, 2016, 166, 5-8.	2.6	1
90	Resistance switching mechanism of La0.8Sr0.2MnO3â^δthin films. Physica B: Condensed Matter, 2016, 483, 99-102.	2.7	5

#	Article	IF	CITATIONS
91	Dielectric and ferroelectric properties of xBaZr0.52Ti0.48O3–(1â^'x)BiFeO3 solid solution ceramics. Journal of Materials Science: Materials in Electronics, 2015, 26, 322-330.	2.2	9
92	Mechanism of ferroelectric resistive switching in Bi0.9La0.1FeO3 thin films. Thin Solid Films, 2015, 583, 13-18.	1.8	6
93	Tunable photovoltaic effects induced by different cooling oxygen pressure in Bi0.9La0.1FeO3 thin films. Journal of Alloys and Compounds, 2015, 624, 1-8.	5.5	35
94	Low-temperature large reversible "table-like―magnetocaloric effect in HoNi0.9Cu0.1Al compound. Physica B: Condensed Matter, 2015, 457, 36-39.	2.7	5
95	Microstructures and Dielectric Properties of BaHf _{0.1} Ti _{0.9} O ₃ Ceramics Prepared Using Conventional and Microwave Sintering Methods. Ferroelectrics, 2014, 467, 78-84.	0.6	1
96	Electrically controlled magnetization switching in CoFe2O4/Pb(Mg1/3Nb2/3)O3–PbTiO3 heterostructure. Materials Letters, 2014, 121, 50-53.	2.6	7
97	Microstructure, dielectric and ferroelectric properties of barium zirconate titanate ceramics prepared by microwave sintering. Journal of Materials Science: Materials in Electronics, 2014, 25, 4841-4850.	2.2	7
98	Photovoltaic enhancement based on improvement of ferroelectric property and band gap in Ti-doped bismuth ferrite thin films. Journal of Alloys and Compounds, 2014, 617, 240-246.	5.5	80
99	Effect of vanadium doping on the electric properties of barium titanate hafnate ceramics. Journal of Materials Science: Materials in Electronics, 2013, 24, 2438-2444.	2.2	4
100	Effect of Zr doping on the microstructure and electric properties of BaHf0.1Ti0.9O3 ceramics. Journal of Materials Science: Materials in Electronics, 2013, 24, 1303-1307.	2.2	1
101	Magnetisation behaviour of mixtures of ferrofluids and paramagnetic fluids with same particle volume fractions. Journal of Experimental Nanoscience, 2012, 7, 282-297.	2.4	14
102	Microstructure and electric properties of strontium niobate ceramics. Ceramics International, 2012, 38, 2601-2603.	4.8	8
103	Effect of Mn doping on the dielectric properties of BaTi0.9Sn0.1O3 ceramics. Journal of Materials Science: Materials in Electronics, 2011, 22, 47-51.	2.2	6
104	The modification effect in magnetization behaviors forÂCoFe2O4–p-NiFe2O4 binary ferrofluids. Applied Physics A: Materials Science and Processing, 2010, 98, 179-186.	2.3	6
105	A study of modified Fe3O4 nanoparticles for the synthesis of ionic ferrofluids. Applied Surface Science, 2010, 256, 6977-6981.	6.1	34
106	The structural force arising from magnetic interactions in polydisperse ferrofluids. Applied Physics Letters, 2009, 94, .	3.3	29
107	Synthesis of self-assembly BaTiO3 nanowire by sol–gel and microwave method. Applied Surface Science, 2009, 255, 9444-9446.	6.1	13
108	Study of magnetisation behaviours for binary ionic ferrofluids. Journal of Experimental Nanoscience, 2009, 4, 9-19.	2.4	11

#	Article	IF	CITATIONS
109	Voltage tunable Ba0.6Sr0.4TiO3 thin films and coplanar phase shifters. Thin Solid Films, 2008, 516, 5258-5261.	1.8	21
110	Study of coercive force for <i>y</i> ZnFe ₂ O ₄ –(1) Tj ETQq0 0 0 rgBT /Overlock 10 Tf 5 Nanoscience, 2008, 3, 245-257.	0 707 Td 2.4	(â^` <i>y</i>)(9
111	INVESTIGATION OF MAGNETIZATION BEHAVIORS OF IONIC FERROFLUIDS BASED ON CoFe ₂ O ₄ NANOPARTICLES. International Journal of Nanoscience, 2008, 07, 269-277.	0.7	4
112	Coplanar Phase Shifters Based on Ferroelectric Thin Films. Journal of Infrared, Millimeter and Terahertz Waves, 2007, 28, 229-235.	0.6	8
113	Effect of particle size of ferroelectric phase on multiferroic properties of MnFe2O4–PbZr0.52Ti0.48O3 multiferroic liquid. Journal of Materials Science: Materials in Electronics, 0, , .	2.2	1