Anurag Krishna

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1079516/publications.pdf Version: 2024-02-01

ANUDAC KDISHNA

#	Article	IF	CITATIONS
1	Perovskite-based solar cells: impact of morphology and device architecture on device performance. Journal of Materials Chemistry A, 2015, 3, 8943-8969.	5.2	522
2	Mixed Dimensional 2D/3D Hybrid Perovskite Absorbers: The Future of Perovskite Solar Cells?. Advanced Functional Materials, 2019, 29, 1806482.	7.8	257
3	Novel hole transporting materials based on triptycene core for high efficiency mesoscopic perovskite solar cells. Chemical Science, 2014, 5, 2702-2709.	3.7	180
4	Crown Ether Modulation Enables over 23% Efficient Formamidinium-Based Perovskite Solar Cells. Journal of the American Chemical Society, 2020, 142, 19980-19991.	6.6	145
5	Interfacial Charge Transfer Anisotropy in Polycrystalline Lead Iodide Perovskite Films. Journal of Physical Chemistry Letters, 2015, 6, 1396-1402.	2.1	141
6	Hole transporting materials for mesoscopic perovskite solar cells – towards a rational design?. Journal of Materials Chemistry A, 2017, 5, 16446-16466.	5.2	141
7	Compositional and Interface Engineering of Organic-Inorganic Lead Halide Perovskite Solar Cells. IScience, 2020, 23, 101359.	1.9	105
8	A universal co-solvent dilution strategy enables facile and cost-effective fabrication of perovskite photovoltaics. Nature Communications, 2022, 13, 89.	5.8	77
9	Multimodal host–guest complexation for efficient and stable perovskite photovoltaics. Nature Communications, 2021, 12, 3383.	5.8	72
10	Nanoscale interfacial engineering enables highly stable and efficient perovskite photovoltaics. Energy and Environmental Science, 2021, 14, 5552-5562.	15.6	69
11	Defect Passivation via the Incorporation of Tetrapropylammonium Cation Leading to Stability Enhancement in Lead Halide Perovskite. Advanced Functional Materials, 2020, 30, 1909737.	7.8	50
12	Facile Synthesis of a Furan–Arylamine Holeâ€Transporting Material for Highâ€Efficiency, Mesoscopic Perovskite Solar Cells. Chemistry - A European Journal, 2015, 21, 15113-15117.	1.7	49
13	Combined Precursor Engineering and Grain Anchoring Leading to MAâ€Free, Phaseâ€Pure, and Stable αâ€Formamidinium Lead Iodide Perovskites for Efficient Solar Cells. Angewandte Chemie - International Edition, 2021, 60, 27299-27306.	7.2	46
14	Facile synthesis of a hole transporting material with a silafluorene core for efficient mesoscopic CH ₃ NH ₃ PbI ₃ perovskite solar cells. Journal of Materials Chemistry A, 2016, 4, 8750-8754.	5.2	36
15	Formation of Highâ€Performance Multi ation Halide Perovskites Photovoltaics by δâ€CsPbl ₃ ∫δâ€RbPbl ₃ Seedâ€Assisted Heterogeneous Nucleation. Advanced Energy Materials, 2021, 11, 2003785.	10.2	32
16	Molecular‣evel Insight into Correlation between Surface Defects and Stability of Methylammonium Lead Halide Perovskite Under Controlled Humidity. Small Methods, 2021, 5, e2000834.	4.6	30
17	Methylammonium Triiodide for Defect Engineering of High-Efficiency Perovskite Solar Cells. ACS Energy Letters, 2021, 6, 3650-3660.	8.8	28
18	Quinoidal 2,2′,6,6′â€Tetraphenylâ€Dipyranylidene as a Dopantâ€Free Holeâ€Transport Material for Stable Costâ€Effective Perovskite Solar Cells. Energy Technology, 2017, 5, 1852-1858.	and 1.8	16

ANURAG KRISHNA

#	Article	IF	CITATIONS
19	Effect of ionic liquid on polyaniline chemically synthesised under falling-pH conditions. Chemical Papers, 2013, 67, .	1.0	11
20	Combined precursor engineering and grain anchoring leading to MAâ€free, phaseâ€pure and stable αâ€formamidinium lead iodide perovskites for efficient solar cells. Angewandte Chemie, 0, , .	1.6	11
21	Effect of Polyvinyl Alcohol on the Growth, Structure, Morphology, and Electrical Conductivity of Polypyrrole Nanoparticles Synthesized via Microemulsion Polymerization. ISRN Nanomaterials, 2012, 2012, 1-6.	0.7	8
22	Nanoscale interfacial engineering enables highly stable and efficient perovskite photovoltaics. , 0, , .		0