David C Jackson

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1079274/publications.pdf

Version: 2024-02-01

187 papers 6,813 citations

42 h-index 70 g-index

194 all docs

194 docs citations

times ranked

194

7700 citing authors

#	Article	lF	CITATIONS
1	Air-Liquid-Interface Differentiated Human Nose Epithelium: A Robust Primary Tissue Culture Model of SARS-CoV-2 Infection. International Journal of Molecular Sciences, 2022, 23, 835.	1.8	15
2	Nonhuman primate models for evaluation of SARS-CoV-2 vaccines. Expert Review of Vaccines, 2022, 21, 1055-1070.	2.0	1
3	Immune profiling of influenzaâ€specific B―and Tâ€cell responses in macaques using flow cytometryâ€based assays. Immunology and Cell Biology, 2021, 99, 97-106.	1.0	6
4	Prophylactic intranasal administration of a TLR2/6 agonist reduces upper respiratory tract viral shedding in a SARS-CoV-2 challenge ferret model. EBioMedicine, 2021, 63, 103153.	2.7	76
5	Robust correlations across six SARSâ€CoVâ€2 serology assays detecting distinct antibody features. Clinical and Translational Immunology, 2021, 10, e1258.	1.7	28
6	Integrated immune dynamics define correlates of COVID-19 severity and antibody responses. Cell Reports Medicine, 2021, 2, 100208.	3.3	115
7	TLR2-mediated activation of innate responses in the upper airways confers antiviral protection of the lungs. JCI Insight, 2021, 6, .	2.3	15
8	Systems serology detects functionally distinct coronavirus antibody features in children and elderly. Nature Communications, 2021, 12, 2037.	5.8	125
9	CD8+ T cell landscape in Indigenous and non-Indigenous people restricted by influenza mortality-associated HLA-A*24:02 allomorph. Nature Communications, 2021, 12, 2931.	5. 8	20
10	Immune cellular networks underlying recovery from influenza virus infection in acute hospitalized patients. Nature Communications, 2021, 12, 2691.	5.8	34
11	Selecting and Using the Appropriate Influenza Vaccine for Each Individual. Viruses, 2021, 13, 971.	1.5	15
12	Potent priming by inactivated whole influenza virus particle vaccines is linked to viral RNA uptake into antigen presenting cells. Vaccine, 2021, 39, 3940-3951.	1.7	8
13	The endogenous inflammatory reflex inhibits the inflammatory response to different immune challenges in mice. Brain, Behavior, and Immunity, 2021, 97, 371-375.	2.0	9
14	TLR2-mediated innate immune priming boosts lung anti-viral immunity. European Respiratory Journal, 2021, 58, 2001584.	3.1	16
15	Modular platforms for the assembly of self-adjuvanting lipopeptide-based vaccines for use in an out-bred population. Vaccine, 2020, 38, 597-607.	1.7	4
16	Vaccine-Specific Immune Responses against Mycobacterium ulcerans Infection in a Low-Dose Murine Challenge Model. Infection and Immunity, 2020, 88, .	1.0	11
17	High antibody titres induced by protein subunit vaccines using <i>Mycobacterium ulcerans </i> Hsp18 and MUL_3720 with a TLR-2 agonist fail to protect against Buruli ulcer in mice. Peerl, 2020, 8, e9659.	0.9	10
18	Geometry of a TLR2-Agonist-Based Adjuvant Can Affect the Resulting Antigen-Specific Immune Response. Molecular Pharmaceutics, 2019, 16, 2037-2047.	2.3	4

#	Article	IF	CITATIONS
19	Human CD8+ T cell cross-reactivity across influenza A, B and C viruses. Nature Immunology, 2019, 20, 613-625.	7.0	180
20	Tear film inflammatory cytokine upregulation in contact lens discomfort. Ocular Surface, 2019, 17, 89-97.	2.2	28
21	In Vivo Imaging of Bioluminescent Mycobacterium ulcerans: A Tool to Refine the Murine Buruli Ulcer Tail Model. American Journal of Tropical Medicine and Hygiene, 2019, 101, 1312-1321.	0.6	9
22	Antibody Responses to a Quadrivalent Hepatitis C Viral-Like Particle Vaccine Adjuvanted with Toll-Like Receptor 2 Agonists. Viral Immunology, 2018, 31, 338-343.	0.6	10
23	Opinion: Making Inactivated and Subunit-Based Vaccines Work. Viral Immunology, 2018, 31, 150-158.	0.6	12
24	The Toll-Like Receptor 2 agonist PEG-Pam2Cys as an immunochemoprophylactic and immunochemotherapeutic against the liver and transmission stages of malaria parasites. International Journal for Parasitology: Drugs and Drug Resistance, 2018, 8, 451-458.	1.4	8
25	A lipidated bi-epitope vaccine comprising of MHC-I and MHC-II binder peptides elicits protective CD4 T cell and CD8 T cell immunity against Mycobacterium tuberculosis. Journal of Translational Medicine, 2018, 16, 279.	1.8	13
26	Modulating Contact Lens Discomfort With Anti-Inflammatory Approaches: A Randomized Controlled Trial., 2018, 59, 3755.		31
27	PEGylation of a TLR2-agonist-based vaccine delivery system improves antigen trafficking and the magnitude of ensuing antibody and CD8+ T cell responses. Biomaterials, 2017, 137, 61-72.	5.7	29
28	Salivary Blockade Protects the Lower Respiratory Tract of Mice from Lethal Influenza Virus Infection. Journal of Virology, 2017, 91, .	1.5	21
29	Structure–function relationships of protein–lipopeptide complexes and influence on immunogenicity. Amino Acids, 2017, 49, 1691-1704.	1.2	9
30	A Randomized, Double-Masked, Placebo-Controlled Clinical Trial of Two Forms of Omega-3 Supplements for Treating Dry Eye Disease. Ophthalmology, 2017, 124, 43-52.	2.5	120
31	Extrinsically derived TNF is primarily responsible for limiting antiviral CD8+ T cell response magnitude. PLoS ONE, 2017, 12, e0184732.	1.1	8
32	A lipidated peptide of Mycobacterium tuberculosis resuscitates the protective efficacy of BCG vaccine by evoking memory T cell immunity. Journal of Translational Medicine, 2017, 15, 201.	1.8	14
33	Competition within the virusâ€specific CD4 Tâ€cell pool limits the T follicular helper response after influenza infection. Immunology and Cell Biology, 2016, 94, 729-740.	1.0	9
34	Spirituality, spiritual need, and spiritual care in aged care: What the literature says. Journal of Religion, Spirituality and Aging, 2016, 28, 281-295.	0.5	30
35	A novel therapeutic strategy of lipidated promiscuous peptide against Mycobacterium tuberculosis by eliciting Th1 and Th17 immunity of host. Scientific Reports, 2016, 6, 23917.	1.6	19
36	Chemical Synthesis of Monomeric, Dimeric and Tetrameric Forms of the Ectodomain of Influenza Matrix 2 Protein. European Journal of Organic Chemistry, 2016, 2016, 1054-1059.	1.2	1

#	Article	IF	Citations
37	Mapping the pulmonary environment of animals protected from virulent H1N1 influenza infection using the TLRâ€2 agonist Pam 2 Cys. Immunology and Cell Biology, 2016, 94, 169-176.	1.0	9
38	Reducing the impact of influenzaâ€associated secondary pneumococcal infections. Immunology and Cell Biology, 2016, 94, 101-108.	1.0	18
39	Establishment of memory CD8+ T cells with live attenuated influenza virus across different vaccination doses. Journal of General Virology, 2016, 97, 3205-3214.	1.3	17
40	Generation of Adaptive Immune Responses Following Influenza Virus Challenge is Not Compromised by Pre-Treatment with the TLR-2 Agonist Pam2Cys. Frontiers in Immunology, 2015, 6, 290.	2.2	8
41	Prior Population Immunity Reduces the Expected Impact of CTL-Inducing Vaccines for Pandemic Influenza Control. PLoS ONE, 2015, 10, e0120138.	1.1	10
42	Oseltamivir Prophylaxis Reduces Inflammation and Facilitates Establishment of Cross-Strain Protective T Cell Memory to Influenza Viruses. PLoS ONE, 2015, 10, e0129768.	1.1	24
43	Bioactivity in an Aggrecan 32â€mer Fragment Is Mediated via Tollâ€like Receptor 2. Arthritis and Rheumatology, 2015, 67, 1240-1249.	2.9	76
44	A lipidated form of the extracellular domain of influenza M2 protein as a self-adjuvanting vaccine candidate. Vaccine, 2015, 33, 3526-3532.	1.7	17
45	A single dose biodegradable vaccine depot that induces persistently high levels of antibody over a year. Biomaterials, 2015, 53, 50-57.	5.7	19
46	Inactivated Influenza Vaccine That Provides Rapid, Innate-Immune-System-Mediated Protection and Subsequent Long-Term Adaptive Immunity. MBio, 2015, 6, e01024-15.	1.8	34
47	Establishment of functional influenza virus-specific CD8+ T cell memory pools after intramuscular immunization. Vaccine, 2015, 33, 5148-5154.	1.7	9
48	Challenges and solutions for a rational vaccine design for TB-endemic regions. Critical Reviews in Microbiology, 2015, 41, 389-398.	2.7	9
49	Different Arms of the Adaptive Immune System Induced by a Combination Vaccine Work in Concert to Provide Enhanced Clearance of Influenza. PLoS ONE, 2014, 9, e115356.	1.1	7
50	TLR Agonists as Modulators of the Innate Immune Response and Their Potential as Agents Against Infectious Disease. Frontiers in Immunology, 2014, 5, 79.	2.2	121
51	Considerations for the rapid deployment of vaccines against H7N9 influenza. Expert Review of Vaccines, 2014, 13, 1327-1337.	2.0	4
52	The use of a TLR2 agonistâ€based adjuvant for enhancing effector and memory CD8 Tâ€cell responses. Immunology and Cell Biology, 2014, 92, 377-383.	1.0	28
53	The Influenza Virus–Specific CTL Immunodominance Hierarchy in Mice Is Determined by the Relative Frequency of High-Avidity T Cells. Journal of Immunology, 2014, 192, 4061-4068.	0.4	28
54	Preemptive priming readily overcomes structure-based mechanisms of virus escape. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 5570-5575.	3.3	18

#	Article	IF	Citations
55	The design and proof of concept for a CD8 ⁺ T cellâ€based vaccine inducing crossâ€subtype protection against influenza A virus. Immunology and Cell Biology, 2013, 91, 96-104.	1.0	34
56	Impaired dendritic cell maturation in response to pandemic H1N109 influenza virus. Journal of Clinical Virology, 2013, 56, 310-315.	1.6	7
57	Lipidated promiscuous peptide augments the expression of MHC-II molecules on dendritic cells and activates T cells. Indian Journal of Medical Research, 2013, 138, 744-8.	0.4	0
58	Chitosan-based particles as biocompatible delivery vehicles for peptide and protein-based vaccines. Procedia in Vaccinology, 2012, 6, 74-79.	0.4	10
59	Electrostatic-mediated enhancement of protein antigen immunogenicity using charged TLR2-targeting lipopeptides. Procedia in Vaccinology, 2012, 6, 80-84.	0.4	0
60	A totally synthetic lipopeptide-based self-adjuvanting vaccine induces neutralizing antibodies against heat-stable enterotoxin from enterotoxigenic Escherichia coli. Vaccine, 2012, 30, 4800-4806.	1.7	24
61	Intranasal Administration of the TLR2 Agonist Pam2Cys Provides Rapid Protection against Influenza in Mice. Molecular Pharmaceutics, 2012, 9, 2710-2718.	2.3	96
62	Lipidated promiscuous peptides vaccine for tuberculosis-endemic regions. Trends in Molecular Medicine, 2012, 18, 607-614.	3.5	22
63	Chitosan Microparticles and Nanoparticles as Biocompatible Delivery Vehicles for Peptide and Protein-Based Immunocontraceptive Vaccines. Molecular Pharmaceutics, 2012, 9, 81-90.	2.3	95
64	Herpes Simplex Virus Antigens Directly Activate NK Cells via TLR2, Thus Facilitating Their Presentation to CD4 T Lymphocytes. Journal of Immunology, 2012, 188, 4158-4170.	0.4	61
65	Control of size dispersity of chitosan biopolymer microparticles and nanoparticles to influence vaccine trafficking and cell uptake. Journal of Biomedical Materials Research - Part A, 2012, 100A, 1859-1867.	2.1	22
66	Polyfunctional CD8+ T cells are associated with the vaccination-induced control of a novel recombinant influenza virus expressing an HCV epitope. Antiviral Research, 2012, 94, 168-178.	1.9	17
67	Induction of Multi-Functional T Cells in a Phase I Clinical Trial of Dendritic Cell Immunotherapy in Hepatitis C Virus Infected Individuals. PLoS ONE, 2012, 7, e39368.	1.1	8
68	Hepatitis C VLPs Delivered to Dendritic Cells by a TLR2 Targeting Lipopeptide Results in Enhanced Antibody and Cell-Mediated Responses. PLoS ONE, 2012, 7, e47492.	1.1	44
69	Lipidation of intact proteins produces highly immunogenic vaccine candidates. Molecular Immunology, 2011, 48, 490-496.	1.0	19
70	A Modular Approach to Assembly of Totally Synthetic Self-adjuvanting Lipopeptide-based Vaccines Allows Conformational Epitope Building. Journal of Biological Chemistry, 2011, 286, 12944-12951.	1.6	26
71	Precursor Frequency and Competition Dictate the HLA-A2â€"Restricted CD8+ T Cell Responses to Influenza A Infection and Vaccination in HLA-A2.1 Transgenic Mice. Journal of Immunology, 2011, 187, 1895-1902.	0.4	43
72	Soluble Proteins Induce Strong CD8+ T Cell and Antibody Responses through Electrostatic Association with Simple Cationic or Anionic Lipopeptides That Target TLR2. Journal of Immunology, 2011, 187, 1692-1701.	0.4	41

#	Article	IF	CITATIONS
73	Affinity Thresholds for Naive CD8+ CTL Activation by Peptides and Engineered Influenza A Viruses. Journal of Immunology, 2011, 187, 5733-5744.	0.4	49
74	Antigen-Driven Patterns of TCR Bias Are Shared across Diverse Outcomes of Human Hepatitis C Virus Infection. Journal of Immunology, 2011, 186, 901-912.	0.4	26
75	Promiscuous Peptide of 16 kDa Antigen Linked to Pam2Cys Protects Against Mycobacterium tuberculosis by Evoking Enduring Memory T-Cell Response. Journal of Infectious Diseases, 2011, 204, 1328-1338.	1.9	38
76	Structural requirement for the agonist activity of the TLR2 ligand Pam2Cys. Amino Acids, 2010, 39, 471-480.	1.2	37
77	A lipopeptide based on the M2 and HA proteins of influenza A viruses induces protective antibody. Immunology and Cell Biology, 2010, 88, 605-611.	1.0	31
78	A phase I clinical trial of dendritic cell immunotherapy in HCV-infected individuals. Journal of Hepatology, 2010, 53, 599-607.	1.8	57
79	Identification of key residues involved in fibril formation by the conserved N-terminal region of Plasmodium falciparum merozoite surface protein 2 (MSP2). Biochimie, 2010, 92, 1287-1295.	1.3	15
80	Neoepitope Antibodies Against MMP-Cleaved and Aggrecanase-Cleaved Aggrecan. Methods in Molecular Biology, 2010, 622, 305-340.	0.4	21
81	Role of CD8+T-cell immunity in influenza infection: potential use in future vaccine development. Expert Review of Respiratory Medicine, 2009, 3, 523-537.	1.0	3
82	Resistance to Celiac Disease in Humanized HLA-DR3-DQ2-Transgenic Mice Expressing Specific Anti-Gliadin CD4+ T Cells. Journal of Immunology, 2009, 182, 7440-7450.	0.4	85
83	T Cell Allorecognition via Molecular Mimicry. Immunity, 2009, 31, 897-908.	6.6	232
84	Antiâ€drug vaccines to treat substance abuse. Immunology and Cell Biology, 2009, 87, 309-314.	1.0	48
85	T CD8 response in diverse outcomes of recurrent exposure to hepatitis C virus. Immunology and Cell Biology, 2009, 87, 464-472.	1.0	10
86	Lipopeptide vaccines illustrate the potential role of subtypeâ€crossreactive T cells in the control of highly virulent influenza. Influenza and Other Respiratory Viruses, 2009, 3, 177-182.	1.5	12
87	Fiber-modified recombinant adenoviral constructs encoding hepatitis C virus proteins induce potent HCV-specific T cell response. Clinical Immunology, 2008, 128, 329-339.	1.4	18
88	Synthesis of Toll-Like Receptor-2 Targeting Lipopeptides as Self-Adjuvanting Vaccines. Methods in Molecular Biology, 2008, 494, 247-261.	0.4	25
89	Dendritic cell acquisition of epitope cargo mediated by simple cationic peptide structures. Peptides, 2008, 29, 881-890.	1.2	8
90	Branched and linear lipopeptide vaccines have different effects on primary CD4+ and CD8+ T-cell activation but induce similar tumor-protective memory CD8+ T-cell responses. Vaccine, 2008, 26, 2570-2579.	1.7	20

#	Article	IF	CITATIONS
91	A self-adjuvanting lipopeptide-based vaccine candidate for the treatment of hepatitis C virus infection. Vaccine, 2008, 26, 4866-4875.	1.7	50
92	Protection against heterologous human papillomavirus challenge by a synthetic lipopeptide vaccine containing a broadly cross-neutralizing epitope of L2. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 5850-5855.	3 . 3	137
93	Secondary Acylation of Klebsiella pneumoniae Lipopolysaccharide Contributes to Sensitivity to Antibacterial Peptides. Journal of Biological Chemistry, 2007, 282, 15569-15577.	1.6	95
94	Recent Advances with TLR2-Targeting Lipopeptide-Based Vaccines. Current Protein and Peptide Science, 2007, 8, 412-417.	0.7	30
95	The Context of Epitope Presentation Can Influence Functional Quality of Recalled Influenza A Virus-Specific Memory CD8+ T Cells. Journal of Immunology, 2007, 179, 2187-2194.	0.4	41
96	Comparison of lipopeptide-based immunocontraceptive vaccines containing different lipid groups. Vaccine, 2007, 25, 92-101.	1.7	50
97	Totally synthetic peptide-based immunocontraceptive vaccines show activity in dogs of different breeds. Vaccine, 2007, 25, 7111-7119.	1.7	28
98	The C-terminal pentapeptide of LHRH is a dominant B cell epitope with antigenic and biological function. Molecular Immunology, 2007, 44, 3724-3731.	1.0	31
99	T cell epitopes of the La/SSB autoantigen in humanized transgenic mice expressing the hLa class II haplotype DRB1*0301/DQB1*0201. Arthritis and Rheumatism, 2007, 56, 3387-3398.	6.7	21
100	A self-adjuvanting multiepitope immunogen that induces a broadly cross-reactive antibody to hepatitis C virus. Hepatology, 2007, 45, 911-920.	3.6	26
101	A partially structured region of a largely unstructured protein, <i>Plasmodium falciparum</i> merozoite surface protein 2 (MSP2), forms amyloidâ€ike fibrils. Journal of Peptide Science, 2007, 13, 839-848.	0.8	30
102	Induction of neutralizing antibody responses to hepatitis C virus with synthetic peptide constructs incorporating both antibody and Tâ€helper epitopes. Immunology and Cell Biology, 2007, 85, 169-173.	1.0	16
103	Simple Branched Arginine-Based Structures can Enhance the Cellular Uptake of Peptide Cargos. International Journal of Peptide Research and Therapeutics, 2007, 13, 431-437.	0.9	1
104	Intranasal Vaccination with a Lipopeptide Containing a Conformationally Constrained Conserved Minimal Peptide, a Universal T Cell Epitope, and a Selfâ€Adjuvanting Lipid Protects Mice from Group A Streptococcus Challenge and Reduces Throat Colonization. Journal of Infectious Diseases, 2006, 194, 325-330.	1.9	72
105	Totally synthetic peptide-based vaccines that target dendritic cells and induce potent antibody or CTL responses. International Congress Series, 2006, 1289, 311-315.	0.2	3
106	Intranasal vaccination with a lipopeptide containing a minimal, conserved M-protein derived peptide and a self-adjuvanting lipid induces both systemic and mucosal immune responses in mice. International Congress Series, 2006, 1289, 316-319.	0.2	0
107	Intranasal lipopeptide primes lung-resident memory CD8+ T cells for long-term pulmonary protection against influenza. European Journal of Immunology, 2006, 36, 770-778.	1.6	71
108	Lipid-containing mimetics of natural triggers of innate immunity as CTL-inducing influenza vaccines. International Immunology, 2006, 18, 1801-1813.	1.8	53

#	Article	IF	Citations
109	Exploiting information inherent in binding sites of virus-specific antibodies: design of an HCV vaccine candidate cross-reactive with multiple genotypes. Antiviral Therapy, 2006, 11, 1005-14.	0.6	11
110	Exploiting Information Inherent in Binding Sites of Virus-Specific Antibodies: Design of An HCV Vaccine Candidate Cross-Reactive with Multiple Genotypes. Antiviral Therapy, 2006, 11, 1005-1014.	0.6	15
111	Dendritic Cell Immunotherapy of Hepatitis C Virus Infection: Toxicology of Lipopeptide-Loaded Dendritic Cells. International Journal of Peptide Research and Therapeutics, 2005, 11, 223-235.	0.9	8
112	Lipid-based Self-Adjuvanting Vaccines. Current Drug Delivery, 2005, 2, 383-393.	0.8	41
113	Mutation of chicken anemia virus VP2 differentially affects serine/threonine and tyrosine protein phosphatase activities. Journal of General Virology, 2005, 86, 623-630.	1.3	21
114	Memory cytolytic T-lymphocytes: induction, regulation and implications for vaccine design. Expert Review of Vaccines, 2005, 4, 711-723.	2.0	5
115	Characterisation of the antibody response to a totally synthetic immunocontraceptive peptide vaccine based on LHRH. Vaccine, 2005, 23, 4427-4435.	1.7	18
116	Identification of dominant epitopes of synthetic immunocontraceptive vaccines that induce antibodies in dogs. Vaccine, 2005, 23, 4589-4597.	1.7	7
117	Neutralising Antibody, CTL and Dendritic Cell Responses to Hepatitis C Virus: A Preventative Vaccine Strategy. Current Drug Targets, 2004, 5, 41-56.	1.0	20
118	Plasmodium falciparum Merozoite Surface Protein 6 Is a Dimorphic Antigen. Infection and Immunity, 2004, 72, 2321-2328.	1.0	33
119	Effects on Rotavirus Cell Binding and Infection of Monomeric and Polymeric Peptides Containing $\hat{l}\pm2\hat{l}^21$ and $\hat{l}\pm\hat{x}\hat{l}^22$ Integrin Ligand Sequences. Journal of Virology, 2004, 78, 11786-11797.	1.5	27
120	A totally synthetic vaccine of generic structure that targets Toll-like receptor 2 on dendritic cells and promotes antibody or cytotoxic T cell responses. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101, 15440-15445.	3.3	226
121	Bypassing luminal barriers, delivery to a gut addressin by parenteral targeting elicits local IgA responses. International Immunology, 2004, 16, 1613-1622.	1.8	14
122	An Insect Antibacterial Peptide-Based Drug Delivery System. Molecular Pharmaceutics, 2004, 1, 220-232.	2.3	35
123	Prospects for dendritic cell vaccination in persistent infection with hepatitis C virus. Journal of Clinical Virology, 2004, 30, 283-290.	1.6	27
124	Single step enrichment of blood dendritic cells by positive immunoselection. Journal of Immunological Methods, 2003, 274, 47-61.	0.6	40
125	Immune responses in hepatitis C virus infection: The role of dendritic cells. Immunology and Cell Biology, 2003, 81, 63-66.	1.0	9
126	Maturation of dendritic cells with lipopeptides that represent vaccine candidates for hepatitis C virus. Immunology and Cell Biology, 2003, 81, 67-72.	1.0	26

#	Article	IF	CITATIONS
127	Dissecting the role of peptides in the immune response: theory, practice and the application to vaccine design. Journal of Peptide Science, 2003, 9, 255-281.	0.8	59
128	Analysis of Immunological Nonresponsiveness to the 19-Kilodalton Fragment of Merozoite Surface Protein 1 of Plasmodium yoelii: Rescue by Chemical Conjugation to Diphtheria Toxoid (DT) and Enhancement of Immunogenicity by Prior DT Vaccination. Infection and Immunity, 2003, 71, 5700-5713.	1.0	23
129	Disabling an integral CTL epitope allows suppression of autoimmune diabetes by intranasal proinsulin peptide. Journal of Clinical Investigation, 2003, 111, 1365-1371.	3.9	89
130	Highly Immunogenic and Totally Synthetic Lipopeptides as Self-Adjuvanting Immunocontraceptive Vaccines. Journal of Immunology, 2002, 169, 4905-4912.	0.4	172
131	Chicken Anemia Virus VP2 Is a Novel Dual Specificity Protein Phosphatase. Journal of Biological Chemistry, 2002, 277, 39566-39573.	1.6	102
132	A 320-Kilobase Artificial Chromosome Encoding the Human HLA DR3-DQ2 MHC Haplotype Confers HLA Restriction in Transgenic Mice. Journal of Immunology, 2002, 168, 3050-3056.	0.4	29
133	Induction of Long-Term Memory CD8 + T Cells for Recall of Viral Clearing Responses against Influenza Virus. Journal of Virology, 2002, 76, 4212-4221.	1.5	77
134	Identification of antigenically active tryptic fragments of apical membrane antigen-1 (AMA1) of Plasmodium chabaudi malaria: strategies for assembly of immunologically active peptides. Vaccine, 2002, 20, 3477-3484.	1.7	6
135	Definition of T cell epitopes within the 19 kDa carboxylterminal fragment of Plasmodium yoelii merozoite surface protein 1 (MSP119) and their role in immunity to malaria. Parasite Immunology, 2002, 20, 263-278.	0.7	28
136	Reduced Antigenicity of the Hepatitis B Virus HBsAg Protein Arising as a Consequence of Sequence Changes in the Overlapping Polymerase Gene That Are Selected by Lamivudine Therapy. Virology, 2002, 293, 305-313.	1.1	480
137	Assembly of synthetic peptide vaccines by chemoselective ligation of epitopes: influence of different chemical linkages and epitope orientations on biological activity. Vaccine, 2001, 19, 3843-3852.	1.7	37
138	Identification of canine helper T-cell epitopes from the fusion protein of canine distemper virus. Immunology, 2001, 104, 58-66.	2.0	48
139	Differential effect of CD8+ and CD8– dendritic cells in the stimulation of secondary CD4+ T cells. International Immunology, 2001, 13, 465-473.	1.8	49
140	New multi-determinant strategy for a group A streptococcal vaccine designed for the Australian Aboriginal population. Nature Medicine, 2000, 6, 455-459.	15.2	147
141	The geometry of synthetic peptide-based immunogens affects the efficiency of T cell stimulation by professional antigen-presenting cells. International Immunology, 2000, 12, 527-535.	1.8	27
142	Multi-epitope schistosome vaccine candidates tested for protective immunogenicity in mice. Vaccine, 2000, 19, 103-113.	1.7	50
143	Totally synthetic lipid-containing polyoxime peptide constructs are potent immunogens. Vaccine, 2000, 18, 1031-1039.	1.7	50
144	Functional analysis of IgA antibodies specific for a conserved epitope within the M protein of group A streptococci from Australian Aboriginal endemic communities. International Immunology, 1999, 11, 569-576.	1.8	28

#	Article	IF	Citations
145	Antigenic and immunogenic properties of totally synthetic peptide-based anti-fertility vaccines. International Immunology, 1999, 11, 1103-1110.	1.8	53
146	Mice lacking the transcription factor subunit Rel can clear an influenza infection and have functional anti-viral cytotoxic T cells but do not develop an optimal antibody response. International Immunology, 1999, 11, 1431-1439.	1.8	54
147	Synthetic peptides induce antibodies in sheep against Taenia ovis. International Journal of Peptide Research and Therapeutics, 1999, 6, 303-312.	0.1	О
148	Synthetic peptides induce antibodies in sheep againstTaenia ovis. International Journal of Peptide Research and Therapeutics, 1999, 6, 303-312.	0.1	4
149	Synthetic peptide antigens induce antibodies to Taenia ovis oncospheres. Vaccine, 1999, 17, 1506-1515.	1.7	6
150	Preparation and properties of totally synthetic immunogens. Vaccine, 1999, 18, 355-361.	1.7	24
151	The antigenic and immunogenic properties of synthetic peptide immunocontraceptive vaccine candidates based on gamete antigens. Vaccine, 1999, 18, 416-425.	1.7	6
152	Immunopotentiation of humoral and cellular responses to inactivated influenza vaccines by two different adjuvants with potential for human use. Vaccine, 1998, 16, 2058-2068.	1.7	25
153	Polymerization of Unprotected Synthetic Peptides:  A View toward Synthetic Peptide Vaccines. Journal of the American Chemical Society, 1997, 119, 1183-1188.	6.6	49
154	Free radical induced polymerization of synthetic peptides into polymeric immunogens. Vaccine, 1997, 15, 1697-1705.	1.7	45
155	Analysis of the interaction between a synthetic peptide of influenza virus hemagglutinin and monoclonal antibodies using an optical biosensor. Molecular Immunology, 1996, 33, 659-670.	1.0	33
156	The assembly and immunological properties of non-linear synthetic immunogens containing T-cell and B-cell determinants. Vaccine, 1996, 14, 553-560.	1.7	34
157	Synthesis of a New Template with a Built-in Adjuvant and Its Use in Constructing Peptide Vaccine Candidates Through Polyoxime Chemistry. Journal of Peptide Science, 1996, 2, 66-72.	0.8	32
158	Manipulation of the helper T cell response to influence antigenic competition occurring with a multivalent vaccine. Immunology and Cell Biology, 1996, 74, 81-89.	1.0	10
159	Defence against the immune barrage: Helminth survival strategies. Immunology and Cell Biology, 1996, 74, 564-574.	1.0	47
160	A synthetic peptide-based polyoxime vaccine construct of high purity and activity. Molecular Immunology, 1995, 32, 1031-1037.	1.0	49
161	Immunological parameters associated with antigenic competition in a multivalent footrot vaccine. Vaccine, 1995, 13, 1649-1657.	1.7	42
162	Synthesis and conformational analysis of N-glycopeptides that contain extended sugar chains. Tetrahedron, 1994, 50, 2373-2390.	1.0	34

#	Article	IF	Citations
163	Conserved Determinants for CD4+ T Cells within the Light Chain of the H3 Hemagglutinin Molecule of Influenza Virus. Virology, 1994, 198, 613-623.	1.1	27
164	Glycosylation of a Synthetic Peptide Representing a T-Cell Determinant of Influenza Virus Hemagglutinin Results in Loss of Recognition by CD4+ T-Cell Clones. Virology, 1994, 199, 422-430.	1.1	30
165	Antigenic competition in a multivalent foot rot vaccine. Vaccine, 1994, 12, 457-464.	1.7	52
166	peptide probes. Molecular Immunology, 1994, 31, 289-299.	1.0	0
167	A study of the advantages and limitations of immunoblotting procedures for the detection of antibodies against influenza virus. Electrophoresis, 1993, 14, 926-936.	1.3	5
168	Modulation of CD4+ T-Cell Recognition of Influenza Hemagglutinin by Carbohydrate Side Chains Located Outside a T-Cell Determinant. Virology, 1993, 192, 282-289.	1.1	24
169	Quantitative analysis of the interaction between lysozyme and monoclonal antibody D1.3. Molecular Immunology, 1993, 30, 47-54.	1.0	8
170	Western blot analysis of antibody responses to influenza virion proteins. Immunology and Cell Biology, 1992, 70, 181-191.	1.0	13
171	Probing the idiotype/anti-idiotype antibody interaction with a set of synthetic peptide homologues. Immunology Letters, 1991, 28, 213-218.	1.1	4
172	Extension of a minimal T cell Determinant allows relaxation of the requirement for particular residues within the determinant. International Immunology, 1991, 3, 1307-1313.	1.8	14
173	The stoichiometry of binding between monoclonal antibody molecules and the hemagglutinin of influenza virus. Virology, 1990, 179, 768-776.	1.1	11
174	Immunochemical and Crystallographic Studies on the Interaction between Antibody and a Synthetic Peptide of Influenza Hemagglutinin., 1990,, 75-85.		0
175	Simultaneous binding of two monoclonal antibodies to epitopes separated in sequence by only three amino acid residues. Molecular Immunology, 1988, 25, 465-471.	1.0	21
176	Antigenic determinants of influenza virus hemagglutinin XII. The epitopes of a synthetic peptide representing the C-terminus of HA1. Virology, 1986, 155, 625-632.	1.1	42
177	Antigenic determinants of influenza virus hemagglutinin XI. Conformational chantes detected by monoclonal antibodies. Virology, 1985, 145, 72-83.	1.1	34
178	Conformational changes in influenza virus haemagglutinin and its monomer detected by monoclonal antibodies. Vaccine, 1985, 3, 175-181.	1.7	10
179	Antibodies elicited by influenza virus hemagglutinin fail to bind to synthetic peptides representing putative antigenic sites. Molecular Immunology, 1985, 22, 145-154.	1.0	42
180	Changes in the antigenicity of the hemagglutinin moleculeof H3 influenza virus at acidic pH. Virology, 1983, 126, 587-599.	1.1	119

#	Article	lF	CITATIONS
181	Chemical and antigenic characterization of the carbohydrate side chains of an Asian (N2) influenza virus neuraminidases. Virology, 1983, 126, 370-375.	1.1	27
182	Antigenic determinants of influenza virus hemagglutininâ€"IX. The carbohydrate side chains from an Asian strain. Molecular Immunology, 1982, 19, 329-338.	1.0	20
183	Antigenic activity of a synthetic peptide comprising the "loop―region of influenza virus hemagglutinin. Virology, 1982, 120, 273-276.	1.1	30
184	Antigenic determinants of influenza virus hemagglutinin VII. The carbohydrate side chains of A/Memphis/102/72 hemagglutinin heavy chain which cross-react with host antigen. Virology, 1981, 108, 71-79.	1.1	17
185	ANTIGENIC CARBOHYDRATE DETERMINANTS ON INFLUENZA HEMAGGLUTININ. , 1981, , 233-252.		4
186	Detection and isolation of an la glycoprotein antigen from mouse serum. Immunogenetics, 1977, 4, 267-279.	1.2	10
187	Low-molecular-weight la antigens in normal mouse serum. Immunogenetics, 1976, 3, 455-463.	1.2	33