
Gr Odette

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/10791903/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	No ball milling needed: Alternative ODS steel manufacturing with gas atomization reaction synthesis (GARS) and friction-based processing. Journal of Nuclear Materials, 2022, 566, 153768.	2.7	6
2	On a new Ti-carbooxinitride redistribution driven microcrack healing mechanism in an annealed 14YWT nanostuctured ferritic alloy. Acta Materialia, 2021, 210, 116842.	7.9	3
3	Precipitation in reactor pressure vessel steels under ion and neutron irradiation: On the role of segregated network dislocations. Acta Materialia, 2021, 212, 116922.	7.9	27
4	The effect of hot rolling on the strength and fracture toughness of 90W–7Ni3Fe tungsten heavy metal alloys. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2021, 824, 141738.	5.6	18
5	The mechanistic implications of the high temperature, long time thermal stability of nanoscale Mn-Ni-Si precipitates in irradiated reactor pressure vessel steels. Scripta Materialia, 2020, 181, 134-139.	5.2	19
6	Effects of neutron flux on irradiation-induced hardening and defects in RPV steels studied by positron annihilation spectroscopy. Journal of Nuclear Materials, 2020, 532, 152041.	2.7	14
7	On the remarkable fracture toughness of 90 to 97W-NiFe alloys revealing powerful new ductile phase toughening mechanisms. Acta Materialia, 2020, 186, 324-340.	7.9	49
8	On the use of charged particles to characterize precipitation in irradiated reactor pressure vessel steels with a wide range of compositions. Journal of Nuclear Materials, 2020, 536, 152173.	2.7	14
9	Microstructural examination of neutron, proton and self-ion irradiation damage in a model Fe9Cr alloy. Journal of Nuclear Materials, 2020, 533, 152130.	2.7	24
10	The Effects of Helium in Irradiated Structural Alloys. , 2020, , 186-234.		7
11	Precipitation and hardening in irradiated low alloy steels with a wide range of Ni and Mn compositions. Acta Materialia, 2019, 179, 119-128.	7.9	50
12	Helical dislocations: Observation of vacancy defect bias of screw dislocations in neutron irradiated Fe–9Cr. Acta Materialia, 2019, 181, 173-184.	7.9	32
13	On the history and status of reactor pressure vessel steel ductile to brittle transition temperature shift prediction models. Journal of Nuclear Materials, 2019, 526, 151863.	2.7	58
14	Texture evolution and microcracking mechanisms in as-extruded and cross-rolled conditions of a 14YWT nanostructured ferritic alloy. Acta Materialia, 2018, 152, 338-357.	7.9	26
15	Direct comparison of nanoindentation and tensile test results on reactor-irradiated materials. Journal of Nuclear Materials, 2018, 504, 135-143.	2.7	39
16	Infrastructure development for radioactive materials at the NSLS-II. Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2018, 880, 40-45.	1.6	13
17	Evolution of the tensile properties of the tempered martensitic steel Eurofer97 after spallation irradiation at SINQ. Nuclear Materials and Energy, 2018, 17, 69-77.	1.3	4
18	Stability of nanosized oxides in ferrite under extremely high dose self ion irradiations. Journal of Nuclear Materials, 2017, 486, 86-95.	2.7	51

#	Article	IF	CITATIONS
19	Development of next generation tempered and ODS reduced activation ferritic/martensitic steels for fusion energy applications. Nuclear Fusion, 2017, 57, 092005.	3.5	177
20	On delamination toughening of a 14YWT nanostructured ferritic alloy. Acta Materialia, 2017, 136, 61-73.	7.9	23
21	Mechanical properties and plasticity size effect of Fe-6%Cr irradiated by Fe ions and by neutrons. Journal of Nuclear Materials, 2016, 482, 236-247.	2.7	17
22	Tensile deformation and fracture properties of a 14YWT nanostructured ferritic alloy. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2016, 675, 437-448.	5.6	37
23	Characterization and comparative analysis of the tensile properties of five tempered martensitic steels and an oxide dispersion strengthened ferritic alloy irradiated at â‰^295ŰC to â‰^6.5Ådpa. Journal of Nuclear Materials, 2016, 468, 232-239.	2.7	28
24	Hardening and microstructural evolution of A533b steels irradiated with Fe ions and electrons. Journal of Nuclear Materials, 2016, 471, 243-250.	2.7	17
25	First-principles calculation of formation energies and electronic structures of hydrogen defects at tetrahedral and octahedral interstitial sites in pyrochlore-type Y2Ti2O7 oxide. Journal of Alloys and Compounds, 2016, 678, 153-159.	5.5	13
26	Effect of tube processing methods on the texture and grain boundary characteristics of 14YWT nanostructured ferritic alloys. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2016, 661, 222-232.	5.6	32
27	On nano-oxide coarsening kinetics in the nanostructured ferritic alloy MA957: A mechanism based predictive model. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2016, 655, 355-362.	5.6	23
28	Structural characterization of nanoscale intermetallic precipitates in highly neutron irradiated reactor pressure vessel steels. Scripta Materialia, 2016, 113, 18-22.	5.2	66
29	Thermodynamic and kinetic modeling of oxide precipitation in nanostructured ferritic alloys. Acta Materialia, 2015, 91, 340-354.	7.9	40
30	On the remarkable thermal stability of nanostructured ferritic alloys. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2014, 613, 296-305.	5.6	46
31	Effect of bulk oxygen on 14YWT nanostructured ferritic alloys. Journal of Nuclear Materials, 2014, 444, 35-38.	2.7	30
32	Evidence for core–shell nanoclusters in oxygen dispersion strengthened steels measured using X-ray absorption spectroscopy. Journal of Nuclear Materials, 2014, 445, 50-56.	2.7	13
33	Effect of long-term thermal aging on magnetic property in reactor pressure vessel steels. Journal of Nuclear Materials, 2013, 439, 131-136.	2.7	6
34	Fracture toughness characterization in the lower transition of neutron irradiated Eurofer97 steel. Journal of Nuclear Materials, 2013, 442, S58-S61.	2.7	7
35	A physically-based correlation of irradiation-induced transition temperature shifts for RPV steels. Journal of Nuclear Materials, 2013, 433, 240-254.	2.7	78
36	Effect of warm pre-stressing on fracture toughness of Eurofer97 steel. Fusion Engineering and Design, 2013, 88, 644-647.	1.9	4

#	Article	IF	CITATIONS
37	Irradiation response in weldment and HIP joint of reduced activation ferritic/martensitic steel, F82H. Journal of Nuclear Materials, 2013, 442, S557-S561.	2.7	9
38	Recent progress of R&D activities on reduced activation ferritic/martensitic steels. Journal of Nuclear Materials, 2013, 442, S2-S8.	2.7	180
39	On the structure and chemistry of complex oxide nanofeatures in nanostructured ferritic alloy U14YWT. Philosophical Magazine, 2012, 92, 2089-2107.	1.6	40
40	The Effects of Helium in Irradiated Structural Alloys. , 2012, , 141-193.		72
41	An ab initio study of Ti–Y–O nanocluster energetics in nanostructured ferritic alloys. Acta Materialia, 2012, 60, 935-947.	7.9	46
42	Transmission electron microscopy characterization of the nanofeatures in nanostructured ferritic alloy MA957. Acta Materialia, 2012, 60, 3456-3468.	7.9	97
43	Reactive gas atomization processing for Fe-based ODS alloys. Journal of Nuclear Materials, 2012, 428, 65-75.	2.7	60
44	Magnetic evaluation of irradiation hardening in A533B reactor pressure vessel steels: Magnetic hysteresis measurements and the model analysis. Journal of Nuclear Materials, 2012, 422, 158-162.	2.7	30
45	Irradiation hardening in F82H irradiated at 573K in the HFIR. Journal of Nuclear Materials, 2011, 417, 108-111.	2.7	16
46	Tensile and fracture toughness properties of the nanostructured oxide dispersion strengthened ferritic alloy 13Cr–1W–0.3Ti–0.3Y2O3. Journal of Nuclear Materials, 2011, 417, 193-196.	2.7	13
47	On the fracture toughness of irradiated F82H: Effects of loss of constraint and strain hardening capacity. Journal of Nuclear Materials, 2011, 417, 115-119.	2.7	11
48	Effects of alloying elements on radiation hardening based on loop formation of electron-irradiated light water reactor pressure vessel model steels. Journal of Nuclear Materials, 2011, 417, 936-939.	2.7	4
49	Helium transport, fate and management in nanostructured ferritic alloys: In situ helium implanter studies. Journal of Nuclear Materials, 2011, 417, 1001-1004.	2.7	70
50	Heat treatment effect on fracture toughness of F82H irradiated in HFIR. Journal of Nuclear Materials, 2011, 417, 112-114.	2.7	14
51	Status and key issues of reduced activation ferritic/martensitic steels as the structural material for a DEMO blanket. Journal of Nuclear Materials, 2011, 417, 9-15.	2.7	144
52	Comparison of radiation-induced segregation in ultrafine-grained and conventional 316 austenitic stainless steels. Ultramicroscopy, 2011, 111, 659-663.	1.9	65
53	Atomic scale investigation of radiation-induced segregation in austenitic stainless steels. Journal of Nuclear Materials, 2010, 406, 244-250.	2.7	79
54	The effect of copper and manganese on magnetic minor hysteresis loops in neutron irradiated Fe model alloys. Journal of Nuclear Materials, 2009, 384, 109-114.	2.7	23

#	Article	IF	CITATIONS
55	Assessment of irradiation embrittlement of the Eurofer97 steel after 590MeV proton irradiation. Journal of Nuclear Materials, 2009, 386-388, 245-248.	2.7	7
56	Helium effects on microstructural evolution in tempered martensitic steels: In situ helium implanter studies in HFIR. Journal of Nuclear Materials, 2009, 386-388, 338-341.	2.7	47
57	Recent progress toward development of reduced activation ferritic/martensitic steels for fusion structural applications. Journal of Nuclear Materials, 2009, 386-388, 411-417.	2.7	107
58	Positron annihilation characterization of nanostructured ferritic alloys. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2009, 518, 150-157.	5.6	35
59	Fracture toughness master-curve analysis of the tempered martensitic steel Eurofer97. Journal of Nuclear Materials, 2009, 386-388, 323-327.	2.7	26
60	On the role of alloy composition and processing parameters in nanocluster formation and dispersion strengthening in nanostuctured ferritic alloys. Acta Materialia, 2009, 57, 392-406.	7.9	354
61	Thermal stability of nano-structured ferritic alloy. Journal of Nuclear Materials, 2008, 377, 59-64.	2.7	59
62	Recent Developments in Irradiation-Resistant Steels. Annual Review of Materials Research, 2008, 38, 471-503.	9.3	1,035
63	Neutron irradiation effects on magnetic minor hysteresis loops in nuclear reactor pressure vessel steels. Philosophical Magazine, 2008, 88, 1791-1800.	1.6	11
64	Status of R&D activities on materials for fusion power reactors. Nuclear Fusion, 2007, 47, S696-S717.	3.5	128
65	A universal relationship between indentation hardness and flow stress. Journal of Nuclear Materials, 2007, 367-370, 556-560.	2.7	25
66	On the relation between irradiation induced changes in the master curve reference temperature shift and changes in strain hardened flow stress. Journal of Nuclear Materials, 2007, 367-370, 561-567.	2.7	19
67	Evaluation of fracture toughness master curve shifts for JMTR irradiated F82H using small specimens. Journal of Nuclear Materials, 2007, 367-370, 593-598.	2.7	12
68	The transport and fate of helium in nanostructured ferritic alloys at fusion relevant He/dpa ratios and dpa rates. Journal of Nuclear Materials, 2007, 367-370, 399-410.	2.7	102
69	Neural network analysis of Charpy transition temperature of irradiated low-activation martensitic steels. Journal of Nuclear Materials, 2007, 367-370, 603-609.	2.7	51
70	Effects of consolidation temperature, strength and microstructure on fracture toughness of nanostructured ferritic alloys. Journal of Nuclear Materials, 2007, 367-370, 208-212.	2.7	36
71	Influence of particle dispersions on the high-temperature strength of ferritic alloys. Journal of Nuclear Materials, 2007, 367-370, 166-172.	2.7	211
72	Fracture toughness and Charpy impact properties of several RAFMS before and after irradiation in HFIR. Journal of Nuclear Materials, 2007, 367-370, 68-73.	2.7	41

#	Article	IF	CITATIONS
73	The role of small specimen test technology in fusion materials development. Journal of Nuclear Materials, 2007, 367-370, 1549-1556.	2.7	46
74	Kinetic Monte Carlo modeling of cascade aging and damage accumulation in Fe–Cu alloys. Journal of Nuclear Materials, 2007, 361, 127-140.	2.7	29
75	Plastic flow properties and fracture toughness characterization of unirradiated and irradiated tempered martensitic steels. Journal of Nuclear Materials, 2007, 367-370, 527-538.	2.7	32
76	The transport and fate of helium in martensitic steels at fusion relevant He/dpa ratios and dpa rates. Journal of Nuclear Materials, 2007, 367-370, 417-422.	2.7	25
77	A critical stress–critical area statistical model of the curve for MA957 in the cleavage transition. Journal of Nuclear Materials, 2007, 367-370, 616-620.	2.7	8
78	The microstructure and strength properties of MA957 nanostructured ferritic alloy joints produced by friction stir and electro-spark deposition welding. Journal of Nuclear Materials, 2007, 367-370, 1197-1202.	2.7	50
79	Influence of statistical and constraint loss size effects on cleavage fracture toughness in the transition—A single variable experiment and database. Engineering Fracture Mechanics, 2006, 73, 134-158.	4.3	55
80	Influence of statistical and constraint loss size effects on cleavage fracture toughness in the transition – A model based analysis. Engineering Fracture Mechanics, 2006, 73, 2723-2747.	4.3	43
81	Neural-network analysis of irradiation hardening in low-activation steels. Journal of Nuclear Materials, 2006, 348, 311-328.	2.7	43
82	Clustering and precipitation in neutron irradiated low copper and copper-free steels and model alloys. , 2006, , .		1
83	Verification of Mechanical Properties of A V-4Cr-4Ti Alloy Using Finite Element Method. Key Engineering Materials, 2005, 297-300, 1013-1018.	0.4	0
84	On the effect of dose rate on irradiation hardening of RPV steels. Philosophical Magazine, 2005, 85, 779-797.	1.6	121
85	Positron Annihilation Spectroscopy of Nanostructural Features in Model Reactor Pressure Vessel Steels. Materials Science Forum, 2004, 445-446, 87-89.	0.3	4
86	The development and stability of Y–Ti–O nanoclusters in mechanically alloyed Fe–Cr based ferritic alloys. Journal of Nuclear Materials, 2004, 329-333, 382-386.	2.7	175
87	TEM examination of microstructural evolution during processing of 14CrYWTi nanostructured ferritic alloys. Journal of Nuclear Materials, 2004, 329-333, 369-371.	2.7	63
88	Tensile properties of a tempered martensitic iron–chromium–carbon model alloy. Journal of Nuclear Materials, 2004, 329-333, 278-282.	2.7	8
89	Multiscale modeling of radiation damage in Fe-based alloys in the fusion environment. Journal of Nuclear Materials, 2004, 329-333, 103-111.	2.7	97
90	A master curve analysis of F82H using statistical and constraint loss size adjustments of small specimen data. Journal of Nuclear Materials, 2004, 329-333, 1243-1247.	2.7	44

#	Article	IF	CITATIONS
91	Recent progress on development of vanadium alloys for fusion. Journal of Nuclear Materials, 2004, 329-333, 47-55.	2.7	134
92	Recent results of the reduced activation ferritic/martensitic steel development. Journal of Nuclear Materials, 2004, 329-333, 39-46.	2.7	129
93	Cu diffusion in α-Fe: determination of solute diffusivities using atomic-scale simulations. Computational Materials Science, 2004, 31, 347-367.	3.0	49
94	Cleavage fracture and irradiation embrittlement of fusion reactor alloys: mechanisms, multiscale models, toughness measurements and implications to structural integrity assessment. Journal of Nuclear Materials, 2003, 323, 313-340.	2.7	120
95	MD modeling of defects in Fe and their interactions. Journal of Nuclear Materials, 2003, 323, 181-191.	2.7	72
96	Precipitation in neutron-irradiated Fe–Cu and Fe–Cu–Mn model alloys: a comparison of APT and SANS data. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2003, 353, 133-139.	5.6	165
97	Composition and magnetic character of nanometre-size Cu precipitates in reactor pressure vessel steels: Implications for nuclear power plant lifetime extension. Philosophical Magazine Letters, 2002, 82, 609-615.	1.2	55
98	Opportunities for materials characterization using high-energy positron beams. Applied Surface Science, 2002, 194, 160-167.	6.1	6
99	Ferritic/martensitic steels – overview of recent results. Journal of Nuclear Materials, 2002, 307-311, 455-465.	2.7	271
100	Modeling the multiscale mechanics of flow localization-ductility loss in irradiation damaged bcc alloys. Journal of Nuclear Materials, 2002, 307-311, 171-178.	2.7	33
101	Recent progress in small specimen test technology. Journal of Nuclear Materials, 2002, 307-311, 1600-1608.	2.7	52
102	Some recent innovations in small specimen testing. Journal of Nuclear Materials, 2002, 307-311, 1643-1648.	2.7	17
103	Tensile and fracture toughness properties of MA957: implications to the development of nanocomposited ferritic alloys. Journal of Nuclear Materials, 2002, 307-311, 484-489.	2.7	69
104	Micromechanical modeling of master curve temperature shifts due to constraint loss. Journal of Nuclear Materials, 2002, 307-311, 1624-1628.	2.7	21
105	Simulation of Irradiation Effects in Reactor Pressure Vessel Steels: the Reactor for Virtual Experiments (REVE) Project. Journal of Testing and Evaluation, 2002, 30, 37-46.	0.7	27
106	Nuclear Reactors: Pressure Vessel Steels. , 2001, , 6369-6376.		3
107	Multiscale-Multiphysics Modeling of Radiation-Damaged Materials: Embrittlement of Pressure-Vessel Steels. MRS Bulletin, 2001, 26, 176-181.	3.5	91
108	Progress and critical issues of reduced activation ferritic/martensitic steel development. Journal of Nuclear Materials, 2000, 283-287, 52-59.	2.7	179

#	Article	IF	CITATIONS
109	On the mechanisms and mechanics of fracture toughness of a V–4Cr–4Ti alloy. Journal of Nuclear Materials, 2000, 283-287, 518-522.	2.7	13
110	Constitutive behavior and fracture toughness properties of the F82H ferritic/martensitic steel. Journal of Nuclear Materials, 2000, 283-287, 721-726.	2.7	22
111	A physically based constitutive model for a V–4Cr–4Ti alloy. Journal of Nuclear Materials, 2000, 283-287, 637-641.	2.7	13
112	A cleavage toughness master curve model. Journal of Nuclear Materials, 2000, 283-287, 120-127.	2.7	41
113	Critical issues and current status of vanadium alloys for fusion energy applications. Journal of Nuclear Materials, 2000, 283-287, 70-78.	2.7	113
114	Confocal microscopy–fracture reconstruction and finite element modeling characterization of local cleavage toughness in a ferritic/martensitic steel in subsized Charpy V-notch impact tests. Journal of Nuclear Materials, 2000, 283-287, 992-996.	2.7	5
115	Dislocation loop structure, energy and mobility of self-interstitial atom clusters in bcc iron. Journal of Nuclear Materials, 2000, 276, 33-40.	2.7	193
116	Progress in the United States programme to develop low activation structural materials for fusion. Nuclear Fusion, 1999, 39, 2055-2061.	3.5	5
117	Low temperature yield properties of two 7–9Cr ferritic/martensitic steels. Journal of Nuclear Materials, 1999, 275, 324-331.	2.7	32
118	Embrittlement recovery due to annealing of reactor pressure vessel steels. Nuclear Engineering and Design, 1998, 179, 257-265.	1.7	43
119	Examination of indention geometry-constitutive behaviour relations with confocal microscopy and finite element modeling. Journal of Nuclear Materials, 1998, 258-263, 452-456.	2.7	9
120	A lattice Monte Carlo simulation of nanophase compositions and structures in irradiated pressure vessel Fe-Cu-Ni-Mn-Si steels. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 1997, 238, 202-209.	5.6	86
121	Energetics of formation and migration of self-interstitials and self-interstitial clusters in α-iron. Journal of Nuclear Materials, 1997, 244, 185-194.	2.7	157
122	Primary damage formation in bcc iron. Journal of Nuclear Materials, 1997, 251, 49-60.	2.7	261
123	A computational microscopy study of nanostructural evolution in irradiated pressure vessel steels. Journal of Nuclear Materials, 1997, 251, 157-171.	2.7	135
124	On the micromechanics of low temperature strength and toughness of intermetallic/metallic microlaminate composites. Acta Materialia, 1996, 44, 4289-4299.	7.9	35
125	The effect of size, crack depth and strain rate on fracture toughness—temperature curves of a low activation martensitic stainless steel. Journal of Nuclear Materials, 1996, 233-237, 342-346.	2.7	15
126	Fracture behavior of surface cracked panels of HT-9 at low temperatures. Journal of Nuclear Materials, 1996, 233-237, 347-350.	2.7	3

#	Article	IF	CITATIONS
127	On the ductile to brittle transition in martensitic stainless steels $\hat{a} \in$ "Mechanisms, models and structural implications. Journal of Nuclear Materials, 1994, 212-215, 45-51.	2.7	48
128	Ductile-reinforcement toughening in Î ³ -TiAl intermetallic-matrix composites: Effects on fracture toughness and fatigue-crack propagation resistance. Acta Metallurgica Et Materialia, 1994, 42, 893-911.	1.8	82
129	Microlaminated high temperature intermetallic composites. Scripta Metallurgica Et Materialia, 1994, 31, 1487-1492.	1.0	26
130	On the contrasting role of ductile-phase reinforcements in the fracture toughness and fatigue-crack propagation behavior of TiNb/γ-TiAl intermetallic matrix composites. Acta Metallurgica Et Materialia, 1992, 40, 353-361.	1.8	100
131	Ductile phase toughening mechanisms in a TiAlî—,TiNb laminate composite. Acta Metallurgica Et Materialia, 1992, 40, 2381-2389.	1.8	80
132	Deformation and fracture in irradiated austenitic stainless steels. Journal of Nuclear Materials, 1992, 191-194, 50-57.	2.7	12
133	On size and geometry effects on the brittle fracture of ferritic and tempered martensitic steels. Journal of Nuclear Materials, 1992, 191-194, 827-830.	2.7	4
134	An electric potential drop technique for characterizing part-through surface cracks. Journal of Nuclear Materials, 1992, 191-194, 1038-1041.	2.7	10
135	Recommendations on damage exposure units for ferritic steel embrittlement correlations. Journal of Nuclear Materials, 1992, 186, 203-205.	2.7	25
136	Application of ball punch tests to evaluating fracture mode transition in ferritic steels. Journal of Nuclear Materials, 1991, 179-181, 429-433.	2.7	18
137	Development of disc compact tension specimens and test techniques for HFIR irradiations. Journal of Nuclear Materials, 1991, 179-181, 434-437.	2.7	8
138	Ductile reinforcement toughening of γ-TiAl: Effects of debonding and ductility. Acta Metallurgica Et Materialia, 1990, 38, 1491-1502.	1.8	149
139	Innovations in Testing Methodology for Fusion Reactor Materials Development. MRS Bulletin, 1989, 14, 29-35.	3.5	3
140	A test procedure for characterizing the toughening of brittle intermetallics by ductile reinforcements. Acta Metallurgica, 1989, 37, 2969-2977.	2.1	94
141	The effects of helium implantation on microstructural evolution in an austenitic alloy. Journal of Nuclear Materials, 1988, 154, 286-304.	2.7	41
142	Analysis of cleavage fracture behavior in HT-9 with a statistical model. Journal of Nuclear Materials, 1988, 155-157, 673-678.	2.7	6
143	On mechanisms controlling swelling in ferritic and martensitic alloys. Journal of Nuclear Materials, 1988, 155-157, 921-927.	2.7	63
144	Microstructure-mechanical property relations in HT-9. Journal of Nuclear Materials, 1987, 148, 22-27.	2.7	5

#	Article	IF	CITATIONS
145	A Comparison of the Relative Importance of Helium and Vacancy Accumulation in Void Nucleation. , 1987, , 358-370.		16
146	A Composite Model of Microstructural Evolution in Austenitic Stainless Steel Under Fast Neutron Irradiation. , 1987, , 371-392.		21
147	Recent Progress in Subsized Charpy Impact Specimen Testing for Fusion Reactor Materials Development. Fusion Science and Technology, 1986, 10, 728-733.	0.6	21
148	Microstructural evolution in an austenitic stainless steel fusion reactor first wall. Journal of Nuclear Materials, 1986, 141-143, 647-653.	2.7	24
149	New approaches to simulating fusion damage in fission reactors. Journal of Nuclear Materials, 1986, 141-143, 1011-1017.	2.7	30
150	Microstructures of HT-9 as a function of heat treatment. Journal of Nuclear Materials, 1986, 141-143, 439-443.	2.7	14
151	Mechanical properties of HT-9 as a function of heat treatment. Journal of Nuclear Materials, 1986, 141-143, 527-531.	2.7	6
152	Shear Punch and Microhardness Tests for Strength and Ductility Measurements. , 1986, , 112-140.		20
153	Methods for forecasting performance limits of fusion reactor structural materials. Nuclear Engineering and Design/fusion: an International Journal Devoted To the Thermal, Mechanical, Materials, Structural, and Design Problems of Fusion Energy, 1985, 2, 145-173.	0.6	11
154	Shear punch and ball microhardness measurements of 14 MeV neutron irradiation hardening in five metals. Journal of Nuclear Materials, 1985, 133-134, 326-331.	2.7	9
155	The effects of strength and geometry on cleavage fracture stress and strain limits of martensitic stainless steels. Journal of Nuclear Materials, 1985, 133-134, 849-852.	2.7	4
156	Analytical solutions for helium bubble and critical radius parameters using a hard sphere equation of state. Journal of Nuclear Materials, 1985, 131, 118-125.	2.7	115
157	Modeling microstructural evolution in fusion reactor environments. Journal of Nuclear Materials, 1985, 133-134, 127-133.	2.7	15
158	The impact of swelling on fusion reactor first wall lifetime. Journal of Nuclear Materials, 1984, 122, 230-235.	2.7	13
159	Shear punch tests for mechanical property measurements in TEM disc-sized specimens. Journal of Nuclear Materials, 1984, 122, 429-434.	2.7	56
160	A model for in-reactor stress rupture of austenitic stainless steels. Journal of Nuclear Materials, 1984, 122, 435-441.	2.7	14
161	The mumechanical mechanisms of cleavage fracture in martensitic stainless steels. Journal of Nuclear Materials, 1984, 122, 442-447.	2.7	19
162	A theoretical assessment of the effect of microchemical, microstructural and environmental mechanisms on swelling incubation in austenitic stainless steels. Journal of Nuclear Materials, 1984, 122, 514-519.	2.7	34

#	Article	IF	CITATIONS
163	Analysis of cleavage fracture potential of martensitic stainless steel fusion structures. Journal of Nuclear Materials, 1983, 117, 264-275.	2.7	23
164	Analysis of cleavage fracture potential of martensitic stainless steel fusion structures. Journal of Nuclear Materials, 1983, 117, 276-286.	2.7	16
165	On the dominant mechanism of irradiation embrittlement of reactor pressure vessel steels. Scripta Metallurgica, 1983, 17, 1183-1188.	1.2	214
166	An evaluation of the application of fracture mechanics procedures to fusion first wall structures. Journal of Nuclear Materials, 1981, 103, 149-154.	2.7	4
167	A creep fracture model for irradiated and helium injected austenitic stainless steels. Journal of Nuclear Materials, 1981, 104, 1239-1243.	2.7	12
168	A model based fission-fusion correlation of cavity swelling in stainless steel. Journal of Nuclear Materials, 1981, 104, 1361-1365.	2.7	23
169	Fission-fusion correlations for swelling and microstructure in stainless steels: Effect of the helium to displacement per atom ratio. Journal of Nuclear Materials, 1981, 104, 1289-1303.	2.7	57
170	Development of mechanical property correlation methodology for fusion environments. Journal of Nuclear Materials, 1979, 85-86, 817-822.	2.7	66
171	Modeling of microstructural evolution under irradiation. Journal of Nuclear Materials, 1979, 85-86, 533-545.	2.7	41