


## List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/10789966/publications.pdf Version: 2024-02-01



| #  | Article                                                                                                                                                                                                                                                                                             | IF   | CITATIONS |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 1  | Recent developments in polydopamine: an emerging soft matter for surface modification and biomedical applications. Nanoscale, 2016, 8, 16819-16840.                                                                                                                                                 | 5.6  | 509       |
| 2  | Preparation of amine functionalized carbon nanotubes via a bioinspired strategy and their application in Cu2+ removal. Applied Surface Science, 2015, 343, 19-27.                                                                                                                                   | 6.1  | 313       |
| 3  | Mussel-inspired fabrication of functional materials and their environmental applications: Progress and prospects. Applied Materials Today, 2017, 7, 222-238.                                                                                                                                        | 4.3  | 282       |
| 4  | Facile preparation of MoS2 based polymer composites via mussel inspired chemistry and their high efficiency for removal of organic dyes. Applied Surface Science, 2017, 419, 35-44.                                                                                                                 | 6.1  | 209       |
| 5  | Recent progress and development on polymeric nanomaterials for photothermal therapy: a brief overview. Journal of Materials Chemistry B, 2017, 5, 194-206.                                                                                                                                          | 5.8  | 183       |
| 6  | Aggregation-induced emission active luminescent polymeric nanoparticles: Non-covalent fabrication methodologies and biomedical applications. Applied Materials Today, 2017, 9, 145-160.                                                                                                             | 4.3  | 158       |
| 7  | Facile synthesis of polymeric fluorescent organic nanoparticles based on the self-polymerization of dopamine for biological imaging. Materials Science and Engineering C, 2017, 77, 972-977.                                                                                                        | 7.3  | 145       |
| 8  | Microwave-assisted multicomponent reactions for rapid synthesis of AIE-active fluorescent polymeric nanoparticles by post-polymerization method. Materials Science and Engineering C, 2017, 80, 578-583.                                                                                            | 7.3  | 141       |
| 9  | Facile fabrication of luminescent polymeric nanoparticles containing dynamic linkages via a one-pot<br>multicomponent reaction: Synthesis, aggregation-induced emission and biological imaging. Materials<br>Science and Engineering C, 2017, 80, 708-714.                                          | 7.3  | 131       |
| 10 | Preparation of AIE-active fluorescent polymeric nanoparticles through a catalyst-free thiol-yne click reaction for bioimaging applications. Materials Science and Engineering C, 2017, 80, 411-416.                                                                                                 | 7.3  | 125       |
| 11 | Surface modification and drug delivery applications of MoS2 nanosheets with polymers through the combination of mussel inspired chemistry and SET-LRP. Journal of the Taiwan Institute of Chemical Engineers, 2018, 82, 205-213.                                                                    | 5.3  | 122       |
| 12 | Recent progress and advances in redox-responsive polymers as controlled delivery nanoplatforms.<br>Materials Chemistry Frontiers, 2017, 1, 807-822.                                                                                                                                                 | 5.9  | 118       |
| 13 | Preparation of water soluble and biocompatible AIE-active fluorescent organic nanoparticles via<br>multicomponent reaction and their biological imaging capability. Chemical Engineering Journal, 2017,<br>308, 527-534.                                                                            | 12.7 | 107       |
| 14 | Direct encapsulation of AIE-active dye with β cyclodextrin terminated polymers: Self-assembly and biological imaging. Materials Science and Engineering C, 2017, 78, 862-867.                                                                                                                       | 7.3  | 102       |
| 15 | Facile preparation of carbon nanotubes based carboxymethyl chitosan nanocomposites through combination of mussel inspired chemistry and Michael addition reaction: Characterization and improved Cu2+ removal capability. Journal of the Taiwan Institute of Chemical Engineers, 2016, 68, 446-454. | 5.3  | 97        |
| 16 | Surface modification of carbon nanotubes by combination of mussel inspired chemistry and SET-LRP.<br>Polymer Chemistry, 2015, 6, 1786-1792.                                                                                                                                                         | 3.9  | 85        |
| 17 | Marrying multicomponent reactions and aggregation-induced emission (AIE): new directions for fluorescent nanoprobes. Polymer Chemistry, 2017, 8, 5644-5654.                                                                                                                                         | 3.9  | 85        |
| 18 | PEGylation of carbon nanotubes via mussel inspired chemistry: Preparation, characterization and biocompatibility evaluation. Applied Surface Science, 2015, 351, 425-432.                                                                                                                           | 6.1  | 74        |

| #  | Article                                                                                                                                                                                                                                                                                                                          | IF   | CITATIONS |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 19 | Stimulus responsive cross-linked AIE-active polymeric nanoprobes: fabrication and biological imaging application. Polymer Chemistry, 2015, 6, 8214-8221.                                                                                                                                                                         | 3.9  | 65        |
| 20 | Surface modification of carbon nanotubes via combination of mussel inspired chemistry and chain transfer free radical polymerization. Applied Surface Science, 2015, 346, 335-341.                                                                                                                                               | 6.1  | 63        |
| 21 | Bioinspired preparation of thermo-responsive graphene oxide nanocomposites in an aqueous solution.<br>Polymer Chemistry, 2015, 6, 5876-5883.                                                                                                                                                                                     | 3.9  | 62        |
| 22 | Bottom-up preparation of nitrogen doped carbon quantum dots with green emission under<br>microwave-assisted hydrothermal treatment and their biological imaging. Materials Science and<br>Engineering C, 2018, 84, 60-66.                                                                                                        | 7.3  | 61        |
| 23 | Mussel inspired functionalization of carbon nanotubes for heavy metal ion removal. RSC Advances, 2015, 5, 68430-68438.                                                                                                                                                                                                           | 3.6  | 58        |
| 24 | Carbon nanotube based polymer nanocomposites: biomimic preparation and organic dye adsorption applications. RSC Advances, 2015, 5, 82503-82512.                                                                                                                                                                                  | 3.6  | 58        |
| 25 | Fabrication and biological imaging application of AIE-active luminescent starch based nanoprobes.<br>Carbohydrate Polymers, 2016, 142, 38-44.                                                                                                                                                                                    | 10.2 | 58        |
| 26 | A rather facile strategy for the fabrication of PEGylated AIE nanoprobes. Polymer Chemistry, 2015, 6, 5288-5294.                                                                                                                                                                                                                 | 3.9  | 55        |
| 27 | A bioinspired strategy for surface modification of silica nanoparticles. Applied Surface Science, 2015, 357, 1996-2003.                                                                                                                                                                                                          | 6.1  | 54        |
| 28 | Facile fabrication of amphiphilic AIE active glucan via formation of dynamic bonds: self assembly,<br>stimuli responsiveness and biological imaging. Journal of Materials Chemistry B, 2016, 4, 4033-4039.                                                                                                                       | 5.8  | 54        |
| 29 | Facile fabrication of luminescent hyaluronic acid with aggregation-induced emission through<br>formation of dynamic bonds and their theranostic applications. Materials Science and Engineering C,<br>2018, 91, 201-207.                                                                                                         | 7.3  | 54        |
| 30 | A one-step ultrasonic irradiation assisted strategy for the preparation of polymer-functionalized carbon quantum dots and their biological imaging. Journal of Colloid and Interface Science, 2018, 532, 767-773.                                                                                                                | 9.4  | 53        |
| 31 | Towards development of a versatile and efficient strategy for fabrication of GO based polymer nanocomposites. Polymer Chemistry, 2015, 6, 7211-7218.                                                                                                                                                                             | 3.9  | 52        |
| 32 | One-step preparation of AIE-active dextran via formation of phenyl borate and their bioimaging application. Chemical Engineering Journal, 2016, 304, 149-155.                                                                                                                                                                    | 12.7 | 48        |
| 33 | A new strategy for fabrication of water dispersible and biodegradable fluorescent organic<br>nanoparticles with AIE and ESIPT characteristics and their utilization for bioimaging. Talanta, 2017,<br>174, 803-808.                                                                                                              | 5.5  | 43        |
| 34 | Facile and highly efficient fabrication of graphene oxide-based polymer nanocomposites through<br>mussel-inspired chemistry and their environmental pollutant removal application. Journal of<br>Materials Science, 2017, 52, 504-518.                                                                                           | 3.7  | 43        |
| 35 | Novel Strategy toward AIE-Active Fluorescent Polymeric Nanoparticles from Polysaccharides:<br>Preparation and Cell Imaging. ACS Sustainable Chemistry and Engineering, 2017, 5, 9955-9964.                                                                                                                                       | 6.7  | 42        |
| 36 | Preparation of PEGylated polymeric nanoprobes with aggregation-induced emission feature through<br>the combination of chain transfer free radical polymerization and multicomponent reaction:<br>Self-assembly, characterization and biological imaging applications. Materials Science and Engineering<br>C, 2017, 72, 352-358. | 7.3  | 41        |

| #  | Article                                                                                                                                                                                                                            | IF   | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 37 | Ultrafast Preparation of AlEâ€Active Fluorescent Organic Nanoparticles via a "Oneâ€Pot―<br>Microwaveâ€Assisted Kabachnik–Fields Reaction. Macromolecular Rapid Communications, 2016, 37,<br>1754-1759.                             | 3.9  | 40        |
| 38 | A powerful "one-pot―tool for fabrication of AIE-active luminescent organic nanoparticles through<br>the combination of RAFT polymerization and multicomponent reactions. Materials Chemistry<br>Frontiers, 2017, 1, 1051-1058.     | 5.9  | 40        |
| 39 | Marrying mussel inspired chemistry with SET‣RP: A novel strategy for surface functionalization of carbon nanotubes. Journal of Polymer Science Part A, 2015, 53, 1872-1879.                                                        | 2.3  | 39        |
| 40 | Direct surface PEGylation of nanodiamond via RAFT polymerization. Applied Surface Science, 2015, 357, 2147-2153.                                                                                                                   | 6.1  | 39        |
| 41 | Fabrication and biomedical applications of AIE active nanotheranostics through the combination of a ring-opening reaction and formation of dynamic hydrazones. Journal of Materials Chemistry B, 2016, 4, 5692-5699.               | 5.8  | 38        |
| 42 | Surface modification of nanodiamond through metal free atom transfer radical polymerization.<br>Applied Surface Science, 2016, 390, 710-717.                                                                                       | 6.1  | 37        |
| 43 | Fabrication of aggregation induced emission active luminescent chitosan nanoparticles via a<br>"one-pot―multicomponent reaction. Carbohydrate Polymers, 2016, 152, 189-195.                                                        | 10.2 | 37        |
| 44 | Preparation and controlled drug delivery applications of mesoporous silica polymer nanocomposites through the visible light induced surface-initiated ATRP. Applied Surface Science, 2017, 412, 571-577.                           | 6.1  | 36        |
| 45 | Mussel inspired preparation of highly dispersible and biocompatible carbon nanotubes. RSC Advances, 2015, 5, 25329-25336.                                                                                                          | 3.6  | 34        |
| 46 | Biomimic modification of graphene oxide. New Journal of Chemistry, 2015, 39, 8172-8178.                                                                                                                                            | 2.8  | 33        |
| 47 | Synthesis of amphiphilic fluorescent polymers via a one-pot combination of multicomponent Hantzsch<br>reaction and RAFT polymerization and their cell imaging applications. Polymer Chemistry, 2017, 8,<br>4805-4810.              | 3.9  | 33        |
| 48 | Toward the development of versatile functionalized carbon nanotubes. RSC Advances, 2015, 5, 38316-38323.                                                                                                                           | 3.6  | 30        |
| 49 | Biomimic preparation of highly dispersible silica nanoparticles based polymer nanocomposites.<br>Ceramics International, 2015, 41, 15075-15082.                                                                                    | 4.8  | 29        |
| 50 | Fabrication of amphiphilic fluorescent nanoparticles with an AIE feature via a one-pot clickable<br>mercaptoacetic acid locking imine reaction: synthesis, self-assembly and bioimaging. Polymer<br>Chemistry, 2016, 7, 4559-4566. | 3.9  | 29        |
| 51 | Construction of biodegradable and biocompatible AIE-active fluorescent polymeric nanoparticles by Ce(IV)/HNO 3 redox polymerization in aqueous solution. Materials Science and Engineering C, 2017, 78, 191-197.                   | 7.3  | 29        |
| 52 | Ultrasonic-assisted Kabachnik-Fields reaction for rapid fabrication of AIE-active fluorescent organic nanoparticles. Ultrasonics Sonochemistry, 2017, 35, 319-325.                                                                 | 8.2  | 29        |
| 53 | Synthesis of Amphiphilic Hyperbranched AlEâ€active Fluorescent Organic Nanoparticles and Their<br>Application in Biological Application. Macromolecular Bioscience, 2016, 16, 223-230.                                             | 4.1  | 28        |
| 54 | Marrying the mussel inspired chemistry and Kabachnik–Fields reaction for preparation of SiO2<br>polymer composites and enhancement removal of methylene blue. Applied Surface Science, 2017, 422,<br>17-27.                        | 6.1  | 28        |

| #  | Article                                                                                                                                                                                                                                                                          | IF  | CITATIONS |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 55 | Preparation of ultrabright AIE nanoprobes via dynamic bonds. Tetrahedron, 2015, 71, 8791-8797.                                                                                                                                                                                   | 1.9 | 27        |
| 56 | Preparation of polymeric silica composites through polydopamine-mediated surface initiated ATRP for<br>highly efficient removal of environmental pollutants. Materials Chemistry and Physics, 2017, 193,<br>501-511.                                                             | 4.0 | 27        |
| 57 | Direct surface grafting of mesoporous silica nanoparticles with phospholipid choline-containing<br>copolymers through chain transfer free radical polymerization and their controlled drug delivery.<br>Journal of Colloid and Interface Science, 2017, 508, 396-404.            | 9.4 | 27        |
| 58 | Room temperature preparation of fluorescent starch nanoparticles from starch-dopamine conjugates and their biological applications. Materials Science and Engineering C, 2018, 82, 204-209.                                                                                      | 7.3 | 27        |
| 59 | Fabrication, self-assembly and biomedical applications of luminescent sodium hyaluronate with aggregation-induced emission feature. Materials Science and Engineering C, 2017, 81, 120-126.                                                                                      | 7.3 | 26        |
| 60 | Facile Fabrication of PEGylated Fluorescent Organic Nanoparticles with Aggregationâ€Induced Emission<br>Feature via Formation of Dynamic Bonds and Their Biological Imaging Applications. Macromolecular<br>Rapid Communications, 2016, 37, 1657-1661.                           | 3.9 | 25        |
| 61 | Mussel-inspired PEGylated carbon nanotubes: biocompatibility evaluation and drug delivery applications. Toxicology Research, 2016, 5, 1371-1379.                                                                                                                                 | 2.1 | 25        |
| 62 | Photo-induced surface grafting of phosphorylcholine containing copolymers onto mesoporous silica nanoparticles for controlled drug delivery. Materials Science and Engineering C, 2017, 79, 596-604.                                                                             | 7.3 | 25        |
| 63 | Fabrication of multifunctional fluorescent organic nanoparticles with AIE feature through photo-initiated RAFT polymerization. Polymer Chemistry, 2017, 8, 7390-7399.                                                                                                            | 3.9 | 25        |
| 64 | Recent Advances and Future Prospects of Aggregationâ€induced Emission Carbohydrate Polymers.<br>Macromolecular Rapid Communications, 2017, 38, 1600575.                                                                                                                          | 3.9 | 23        |
| 65 | Synthesis and biological imaging of cross-linked fluorescent polymeric nanoparticles with aggregation-induced emission characteristics based on the combination of RAFT polymerization and the Biginelli reaction. Journal of Colloid and Interface Science, 2018, 528, 192-199. | 9.4 | 23        |
| 66 | Facile synthesis and characterization of poly(levodopa)-modified silica nanocomposites via<br>self-polymerization of levodopa and their adsorption behavior toward Cu2+. Journal of Materials<br>Science, 2016, 51, 9625-9637.                                                   | 3.7 | 22        |
| 67 | Fabrication of AIE-active amphiphilic fluorescent polymeric nanoparticles through host–guest interaction. RSC Advances, 2016, 6, 54812-54819.                                                                                                                                    | 3.6 | 21        |
| 68 | Polymerizable aggregation-induced emission dye for preparation of cross-linkable fluorescent<br>nanoprobes with ultra-low critical micelle concentrations. Materials Science and Engineering C, 2017,<br>76, 586-592.                                                            | 7.3 | 21        |
| 69 | Self-catalyzed photo-initiated RAFT polymerization for fabrication of fluorescent polymeric<br>nanoparticles with aggregation-induced emission feature. Materials Science and Engineering C, 2018,<br>83, 154-159.                                                               | 7.3 | 19        |
| 70 | Facile Fabrication of AlE-Active Fluorescent Polymeric Nanoparticles with Ultra-Low Critical Micelle<br>Concentration Based on Ce(IV) Redox Polymerization for Biological Imaging Applications.<br>Macromolecular Rapid Communications, 2017, 38, 1600752.                       | 3.9 | 17        |
| 71 | Synthesis and bioimaging of biodegradable red fluorescent organic nanoparticles with aggregation-induced emission characteristics. Journal of Colloid and Interface Science, 2017, 508, 248-253.                                                                                 | 9.4 | 16        |
| 72 | Rapid preparation of branched and degradable AIE-active fluorescent organic nanoparticles via<br>formation of dynamic phenyl borate bond. Colloids and Surfaces B: Biointerfaces, 2017, 150, 114-120.                                                                            | 5.0 | 15        |

| #  | Article                                                                                                                                                                                                                                                          | lF  | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 73 | Nanodiamond based supermolecular nanocomposites: preparation and biocompatibility evaluation.<br>RSC Advances, 2015, 5, 96983-96989.                                                                                                                             | 3.6 | 14        |
| 74 | Fabrication of water dispersible and biocompatible AIE-active fluorescent polymeric nanoparticles through a "one-pot―Mannich reaction. Polymer Chemistry, 2017, 8, 4746-4751.                                                                                    | 3.9 | 14        |
| 75 | Fabrication and biological imaging of polyhedral oligomeric silsesquioxane cross-linked fluorescent<br>polymeric nanoparticles with aggregation-induced emission feature. Applied Surface Science, 2017, 423,<br>469-475.                                        | 6.1 | 13        |
| 76 | Microwave-assisted Diels-Alder reaction for rapid synthesis of luminescent nanodiamond with<br>AIE-active dyes and their biomedical applications. Materials Chemistry and Physics, 2017, 197, 256-265.                                                           | 4.0 | 12        |
| 77 | Synthesis of fluorescent dendrimers with aggregation-induced emission features through a one-pot<br>multi-component reaction and their utilization for biological imaging. Journal of Colloid and<br>Interface Science, 2018, 509, 327-333.                      | 9.4 | 10        |
| 78 | Fabrication of β cyclodextrin containing AIE-active polymeric composites through formation of dynamic phenylboronic borate and their theranostic applications. Cellulose, 2019, 26, 8829-8841.                                                                   | 4.9 | 9         |
| 79 | Facile preparation and biological imaging of luminescent polymeric nanoprobes with<br>aggregation-induced emission characteristics through Michael addition reaction. Colloids and<br>Surfaces B: Biointerfaces, 2016, 145, 795-801.                             | 5.0 | 7         |
| 80 | Surface PEGylation of mesoporous silica materials via surface-initiated chain transfer free radical polymerization: Characterization and controlled drug release. Materials Science and Engineering C, 2017, 81, 57-65.                                          | 7.3 | 7         |
| 81 | Facile fabrication of cross-linked fluorescent organic nanoparticles with aggregation-induced<br>emission characteristic via the thiol-ene click reaction and their potential for biological imaging.<br>Materials Science and Engineering C, 2019, 98, 293-299. | 7.3 | 7         |
| 82 | Facile preparation, through Schiff base formation, of luminescent amphiphilic carbohydrate polymers<br>with aggregation-induced emission characteristics for biological imaging. RSC Advances, 2016, 6,<br>76011-76016.                                          | 3.6 | 5         |