Javier Perez-Moreno

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/10789273/publications.pdf

Version: 2024-02-01

430874 454955 33 906 18 30 citations g-index h-index papers 34 34 34 1211 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Molecular Origins of the Nonlinear Optical Responses of a Series of \hat{l}_{\pm} -(X-2-Pyridylamino)- <i>0</i> >cresol Chromophores from Concerted X-ray Diffraction, Hyper-Rayleigh Scattering, and <i>Ab Initio</i> >calculations. Journal of Physical Chemistry C, 2019, 123, 665-676.	3.1	7
2	Octupolar organometallic Pt(II) NCN-pincer complexes; Synthesis, electronic, photophysical, and NLO properties. Journal of Organometallic Chemistry, 2018, 867, 246-252.	1.8	4
3	Azonia aromatic heterocycles as a new acceptor unit in D-Ï€-A + vs D-A + nonlinear optical chromophores. Dyes and Pigments, 2017, 144, 17-31.	3.7	11
4	Three-state interactions determine the second-order nonlinear optical response. Journal of the Optical Society of America B: Optical Physics, 2016, 33, E171.	2.1	1
5	Relating the Structure of Geminal Amido Esters to their Molecular Hyperpolarizability. Journal of Physical Chemistry C, 2016, 120, 29439-29448.	3.1	6
6	Phosphorescence emission from BAIq by forced intersystem crossing in a colloidal photonic crystal. Molecular Physics, 2016, 114, 2248-2252.	1.7	3
7	Applying universal scaling laws to identify the best molecular design paradigms for second-order nonlinear optics. Journal of the Optical Society of America B: Optical Physics, 2016, 33, E45.	2.1	5
8	Applying universal scaling laws to identify the best molecular design paradigms for third-order nonlinear optics. Journal of the Optical Society of America B: Optical Physics, 2016, 33, E57.	2.1	4
9	Thiophene-based dyes for probing membranes. Organic and Biomolecular Chemistry, 2015, 13, 3792-3802.	2.8	41
10	A toy model for the nonlinear optical response of molecules with modulated conjugation. , 2014, , .		0
11	Novel charged NLO chromophores based on quinolizinium acceptor units. Dyes and Pigments, 2014, 101, 116-121.	3.7	27
12	Molecular Origins of the High-Performance Nonlinear Optical Susceptibility in a Phenolic Polyene Chromophore: Electron Density Distributions, Hydrogen Bonding, and ab Initio Calculations. Journal of Physical Chemistry C, 2013, 117, 9416-9430.	3.1	34
13	"Push-no-pull―porphyrins for second harmonic generation imaging. Chemical Science, 2013, 4, 2024.	7.4	28
14	Sum rules and scaling in nonlinear optics. Physics Reports, 2013, 529, 297-398.	25. 6	56
15	Strong Wavelength Dependence of Hyperpolarizability in the Near-Infrared Biological Window for Second-Harmonic Generation by Amphiphilic Porphyrins. Journal of Physical Chemistry C, 2012, 116, 13781-13787.	3.1	20
16	Dispersion Overwhelms Charge Transfer in Determining the Magnitude of the First Hyperpolarizability in Triindole Octupoles. Journal of Physical Chemistry C, 2012, 116, 12312-12321.	3.1	30
17	Linear and Nonlinear Optical Properties of Colloidal Photonic Crystals. Chemical Reviews, 2012, 112, 2268-2285.	47.7	158
18	Comment on "Organometallic Complexes for Nonlinear Optics. 45. Dispersion of the Thirdâ€order Nonlinear Optical Properties of Triphenylamineâ€cored Alkynylruthenium Dendrimersâ€â€" Increasing the Nonlinear Optical Response by Two Orders of Magnitude. Advanced Materials, 2011, 23, 1428-1432.	21.0	33

#	Article	IF	Citations
19	Experimental verification of a self-consistent theory of the first-, second-, and third-order (non)linear optical response. Physical Review A, 2011, 84, .	2.5	14
20	Heteroaromatic Cationâ€Based Chromophores: Synthesis and Nonlinear Optical Properties of Alkynylazinium Salts. European Journal of Organic Chemistry, 2010, 2010, 6323-6330.	2.4	11
21	Synthesis and Nonlinear Optical Properties of Tetrahedral Octupolar Phthalocyanine-Based Systems. Journal of Physical Chemistry B, 2010, 114, 6309-6315.	2.6	32
22	FUNDAMENTAL LIMITS: DEVELOPING NEW TOOLS FOR A BETTER UNDERSTANDING OF SECOND-ORDER MOLECULAR NONLINEAR OPTICS. Journal of Nonlinear Optical Physics and Materials, 2009, 18, 401-440.	1.8	7
23	Modulated Conjugation as a Means of Improving the Intrinsic Hyperpolarizability. Journal of the American Chemical Society, 2009, 131, 5084-5093.	13.7	70
24	Preparation and characterization of second order non-linear optical properties of new "push–pull― platinum complexes. Dalton Transactions, 2009, , 4538.	3.3	36
25	Sum Rules: Applications to Nonlinear Optics at the Molecular Level. , 2009, , .		0
26	Synthesis and nonlinear optical properties of linear and \hat{b} -shaped pyranone-based chromophores. Tetrahedron, 2008, 64, 3772-3781.	1.9	24
27	Substituted 4,4′-Stilbenoid NCN-Pincer Platinum(II) Complexes. Luminescence and Tuning of the Electronic and NLO Properties and the Application in an OLED. Organometallics, 2008, 27, 1690-1701.	2.3	56
28	A new dipole-free sum-over-states expression for the second hyperpolarizability. Journal of Chemical Physics, 2008, 128, 084109.	3.0	37
29	Combined molecular and supramolecular bottom-up nanoengineering for enhanced nonlinear optical response: Experiments, modeling, and approaching the fundamental limit. Journal of Chemical Physics, 2007, 126, 074705.	3.0	33
30	Modulated conjugation as a means for attaining a record high intrinsic hyperpolarizability. Optics Letters, 2007, 32, 59.	3.3	75
31	High "intrinsic" first hyperpolarizability by modulating the conjugation path between donor and acceptor., 2007,,.		0
32	Using numerical optimization techniques and conjugation modulation to design the ultimate nonlinear-optical molecule., 2007,,.		0
33	Synthesis, Crystal Structure, and Second-Order Nonlinear Optical Properties of Ruthenium(II) Complexes with Substituted Bipyridine and Phenylpyridine Ligands. European Journal of Inorganic Chemistry, 2006, 2006, 3105-3113.	2.0	30