
Steven M Johnson

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1078876/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	The Transthyretin Amyloidoses: From Delineating the Molecular Mechanism of Aggregation Linked to Pathology to a Regulatory-Agency-Approved Drug. Journal of Molecular Biology, 2012, 421, 185-203.	4.2	267
2	Native State Kinetic Stabilization as a Strategy To Ameliorate Protein Misfolding Diseases:Â A Focus on the Transthyretin Amyloidoses. Accounts of Chemical Research, 2005, 38, 911-921.	15.6	261
3	Structure-based design of kinetic stabilizers that ameliorate the transthyretin amyloidoses. Current Opinion in Structural Biology, 2010, 20, 54-62.	5.7	160
4	Biochemical and Structural Evaluation of Highly Selective 2-Arylbenzoxazole-Based Transthyretin Amyloidogenesis Inhibitors. Journal of Medicinal Chemistry, 2008, 51, 260-270.	6.4	127
5	Bisaryloxime Ethers as Potent Inhibitors of Transthyretin Amyloid Fibril Formation. Journal of Medicinal Chemistry, 2005, 48, 1576-1587.	6.4	97
6	Kinetic Stabilization of an Oligomeric Protein by a Single Ligand Binding Event. Journal of the American Chemical Society, 2005, 127, 5540-5551.	13.7	95
7	Potent and Selective Structure-Based Dibenzofuran Inhibitors of Transthyretin Amyloidogenesis:Â Kinetic Stabilization of the Native State. Journal of the American Chemical Society, 2005, 127, 6662-6671.	13.7	76
8	Toward Optimization of the Linker Substructure Common to Transthyretin Amyloidogenesis Inhibitors Using Biochemical and Structural Studies. Journal of Medicinal Chemistry, 2008, 51, 6348-6358.	6.4	73
9	A Substructure Combination Strategy To Create Potent and Selective Transthyretin Kinetic Stabilizers That Prevent Amyloidogenesis and Cytotoxicity. Journal of the American Chemical Society, 2010, 132, 1359-1370.	13.7	67
10	Toward Optimization of the Second Aryl Substructure Common to Transthyretin Amyloidogenesis Inhibitors Using Biochemical and Structural Studies. Journal of Medicinal Chemistry, 2009, 52, 1115-1125.	6.4	66
11	A biochemical screen for GroEL/GroES inhibitors. Bioorganic and Medicinal Chemistry Letters, 2014, 24, 786-789.	2.2	35
12	GroEL/ES inhibitors as potential antibiotics. Bioorganic and Medicinal Chemistry Letters, 2016, 26, 3127-3134.	2.2	35
13	Sulfonamido-2-arylbenzoxazole GroEL/ES Inhibitors as Potent Antibacterials against Methicillin-Resistant <i>Staphylococcus aureus</i> (MRSA). Journal of Medicinal Chemistry, 2018, 61, 7345-7357.	6.4	35
14	Requirement for binding multiple ATPs to convert a GroEL ring to the folding-active state. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 19205-19210.	7.1	28
15	Targeting the HSP60/10 chaperonin systems of Trypanosoma brucei as a strategy for treating African sleeping sickness. Bioorganic and Medicinal Chemistry Letters, 2016, 26, 5247-5253.	2.2	26
16	Parkinson's disease-associated mutations in the GTPase domain of LRRK2 impair its nucleotide-dependent conformational dynamics. Journal of Biological Chemistry, 2019, 294, 5907-5913.	3.4	25
17	HSP60/10 chaperonin systems are inhibited by a variety of approved drugs, natural products, and known bioactive molecules. Bioorganic and Medicinal Chemistry Letters, 2019, 29, 1106-1112.	2.2	22
18	Hydroxybiphenylamide GroEL/ES Inhibitors Are Potent Antibacterials against Planktonic and Biofilm Forms of <i>Staphylococcus aureus</i> . Journal of Medicinal Chemistry, 2018, 61, 10651-10664.	6.4	19

STEVEN M JOHNSON

#	Article	IF	CITATIONS
19	A high throughput substrate binding assay reveals hexachlorophene as an inhibitor of the ER-resident HSP70 chaperone GRP78. Bioorganic and Medicinal Chemistry Letters, 2019, 29, 1689-1693.	2.2	14
20	Dual-targeting GroEL/ES chaperonin and protein tyrosine phosphatase B (PtpB) inhibitors: A polypharmacology strategy for treating Mycobacterium tuberculosis infections. Bioorganic and Medicinal Chemistry Letters, 2019, 29, 1665-1672.	2.2	10
21	Analogs of nitrofuran antibiotics are potent GroEL/ES inhibitor pro-drugs. Bioorganic and Medicinal Chemistry, 2020, 28, 115710.	3.0	10
22	Semi-quantitative models for identifying potent and selective transthyretin amyloidogenesis inhibitors. Bioorganic and Medicinal Chemistry Letters, 2017, 27, 3441-3449.	2.2	8
23	Functional Differences between E. coli and ESKAPE Pathogen GroES/GroEL. MBio, 2021, 12, .	4.1	8
24	Exploiting the HSP60/10 chaperonin system as a chemotherapeutic target for colorectal cancer. Bioorganic and Medicinal Chemistry, 2021, 40, 116129.	3.0	7
25	Allosteric differences dictate GroEL complementation of <i>E.Âcoli</i> . FASEB Journal, 2022, 36, e22198.	0.5	1
26	Bilineal evolution of a <i>U2AF1</i> -mutated clone associated with acquisition of distinct secondary mutations. Blood Advances, 2021, 5, 5612-5616.	5.2	0