Mohammad Al-Emrani

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/10787782/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Mean Stress Effect in High-Frequency Mechanical Impact (HFMI)-Treated Steel Road Bridges. Buildings, 2022, 12, 545.	3.1	5
2	The efficiency of HFMI treatment and TIG remelting for extending the fatigue life of existing welded structures. Steel Construction, 2021, 14, 95-106.	0.8	6
3	Innovative flexural strengthening of RC beams using self-anchored prestressed CFRP plates: Experimental and numerical investigations. Engineering Structures, 2021, 243, 112687.	5.3	19
4	Fatigue-strength assessment of laser welds in corrugated core steel sandwich panels. Journal of Constructional Steel Research, 2020, 164, 105797.	3.9	5
5	Innovative prestressing method for externally bonded CFRP laminates without mechanical anchorage. Engineering Structures, 2019, 197, 109416.	5.3	15
6	The impact of production-dependent geometric properties on fatigue-relevant stresses in laser-welded corrugated core steel sandwich panels. Welding in the World, Le Soudage Dans Le Monde, 2019, 63, 1801-1818.	2.5	2
7	On the strength prediction of adhesively bonded FRP-steel joints using cohesive zone modelling. Theoretical and Applied Fracture Mechanics, 2018, 93, 64-78.	4.7	50
8	Transverse shear stiffness of corrugated core steel sandwich panels with dual weld lines. Thin-Walled Structures, 2017, 117, 98-112.	5.3	29
9	Durability of bonded FRP-to-steel joints: Effects of moisture, de-icing salt solution, temperature and FRP type. Composites Part B: Engineering, 2017, 119, 153-167.	12.0	141
10	Dependency of cohesive laws of a structural adhesive in Mode-I and Mode-II loading on moisture, freeze-thaw cycling, and their synergy. Materials and Design, 2017, 122, 433-447.	7.0	15
11	02.07: A numerical approach to the rotational stiffness of stake welds. Ce/Papers, 2017, 1, 489-498.	0.3	1
12	Durability of CFRP/steel joints under cyclic wet-dry and freeze-thaw conditions. Composites Part B: Engineering, 2017, 126, 211-226.	12.0	61
13	Effects of moisture on the long-term performance of adhesively bonded FRP/steel joints used in bridges. Composites Part B: Engineering, 2016, 92, 447-462.	12.0	108
14	Durability of Adhesively Bonded CFRP/Steel Joints in Civil Engineering Applications. , 2016, , .		0
15	Environmental durability of adhesively bonded FRP/steel joints in civil engineering applications: State of the art. Composites Part B: Engineering, 2015, 81, 259-275.	12.0	176
16	An investigation of distortion-induced fatigue cracking under variable amplitude loading using 3D crack propagation analysis. Engineering Failure Analysis, 2014, 45, 151-163.	4.0	13
17	Investigation of distortion-induced fatigue cracked welded details using 3D crack propagation analysis. International Journal of Fatigue, 2014, 64, 54-66.	5.7	32
18	A comparative study of different fatigue failure assessments of welded bridge details. International Journal of Fatigue, 2013, 49, 62-72.	5.7	44

#	Article	IF	CITATIONS
19	DESIGN OF ADEHSIVE JOINTS IN FRP-BONDED STEEL BEAMS. International Journal of Structural Stability and Dynamics, 2012, 12, 53-73.	2.4	1
20	Fatigue-Prone Details in Steel Bridges. Buildings, 2012, 2, 456-476.	3.1	106
21	Modelling and fatigue life assessment of orthotropic bridge deck details using FEM. International Journal of Fatigue, 2012, 40, 129-142.	5.7	92
22	A new design model for adhesive joints used to bond FRP laminates to steel beams. Construction and Building Materials, 2012, 30, 686-694.	7.2	22
23	A new design model for adhesive joints used to bond FRP laminates to steel beams – Part A: Background and theory. Construction and Building Materials, 2012, 34, 486-493.	7.2	22
24	Effect of Laminate Tapering on Strain Distribution in Adhesive Joints: Experimental Investigation. Journal of Reinforced Plastics and Composites, 2010, 29, 972-985.	3.1	9
25	Stress Distribution in Adhesive Joints with Tapered Laminates — Effect of Tapering Length and Material Properties. Journal of Composite Materials, 2010, 44, 287-302.	2.4	23
26	Carbon-fibre composites for strengthening steel structures. Thin-Walled Structures, 2009, 47, 1048-1058.	5.3	78
27	Interfacial stress analysis of geometrically modified adhesive joints in steel beams strengthened with FRP laminates. Construction and Building Materials, 2009, 23, 1413-1422.	7.2	52
28	Experimental and Numerical Investigation of the Behaviour and Strength of Composite Steel-CFRP Members. Advances in Structural Engineering, 2006, 9, 819-831.	2.4	25
29	Fatigue Performance of Stringer-to-Floor-Beam Connections in Riveted Railway Bridges. Journal of Bridge Engineering, 2005, 10, 179-185.	2.9	44
30	Overlooked Secondary Effects in Open-Deck Truss Bridges. Structural Engineering International: Journal of the International Association for Bridge and Structural Engineering (IABSE), 2004, 14, 307-312.	0.8	12