
## T Irifune

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/10784077/publications.pdf Version: 2024-02-01



TIDIELINE

| #  | Article                                                                                                                                                                                                        | IF   | CITATIONS |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 1  | Grain size dependent high-pressure elastic properties of ultrafine micro/nanocrystalline grossular.<br>Scientific Reports, 2021, 11, 22481.                                                                    | 1.6  | 0         |
| 2  | Nano-polycrystalline diamond anvils: key devices for XAS at extreme conditions: their use, scientific impact, present status and future needs. High Pressure Research, 2020, 40, 65-81.                        | 0.4  | 13        |
| 3  | Chemical Reaction Between Metallic Iron and a Limited Water Supply Under Pressure: Implications for<br>Water Behavior at the Coreâ€Mantle Boundary. Geophysical Research Letters, 2020, 47, e2020GL089616.     | 1.5  | 3         |
| 4  | Solid Solution and Compression Behavior of Hydroxides in the Lower Mantle. Journal of Geophysical<br>Research: Solid Earth, 2019, 124, 10231-10239.                                                            | 1.4  | 16        |
| 5  | Phase Relations in the Model System SiO2–MgO–Cr2O3: Evidence from the Results of Experiments in<br>Petrologically Significant Sections at 12–24 GPa and 1600°C. Petrology, 2018, 26, 588-598.                  | 0.2  | 3         |
| 6  | Pressure-induced nano-crystallization of silicate garnets from glass. Nature Communications, 2016, 7, 13753.                                                                                                   | 5.8  | 53        |
| 7  | Phase relations and formation of chromium-rich phases in the system Mg4Si4O12–Mg3Cr2Si3O12 at<br>10–24 CPa and 1,600°C. Contributions To Mineralogy and Petrology, 2015, 169, 1.                               | 1.2  | 28        |
| 8  | Phase transitions of serpentine in the lower mantle. Physics of the Earth and Planetary Interiors, 2015, 245, 52-58.                                                                                           | 0.7  | 14        |
| 9  | Phase Transitions and Mineralogy of the Lower Mantle. , 2015, , 33-60.                                                                                                                                         |      | 26        |
| 10 | Crystal chemistry of dense hydrous magnesium silicates: The structure of phase H, MgSiH2O4,<br>synthesized at 45 GPa and 1000 ÂC. American Mineralogist, 2014, 99, 1802-1805.                                  | 0.9  | 36        |
| 11 | Stability of hydrous silicate at high pressures and water transport to the deep lower mantle. Nature Geoscience, 2014, 7, 224-227.                                                                             | 5.4  | 259       |
| 12 | Note: High-pressure generation using nano-polycrystalline diamonds as anvil materials. Review of<br>Scientific Instruments, 2011, 82, 066104.                                                                  | 0.6  | 27        |
| 13 | In situ stress-strain measurements in a deformation-DIA apparatus at P-T conditions of the upper part of the mantle transition zone. American Mineralogist, 2011, 96, 1665-1672.                               | 0.9  | 23        |
| 14 | Laser heating in nano-polycrystalline diamond anvil cell. Journal of Physics: Conference Series, 2010,<br>215, 012192.                                                                                         | 0.3  | 7         |
| 15 | Sound velocities of majorite garnet and the composition of the mantle transition region. Nature, 2008, 451, 814-817.                                                                                           | 13.7 | 130       |
| 16 | Ultrahard diamond indenter prepared from nanopolycrystalline diamond. Review of Scientific<br>Instruments, 2008, 79, 056102.                                                                                   | 0.6  | 31        |
| 17 | Mineralogy of the Earth $\hat{a} \in \hat{~}$ Phase Transitions and Mineralogy of the Lower Mantle. , 2007, , 33-62.                                                                                           |      | 30        |
| 18 | Hardness and deformation microstructures of nano-polycrystalline diamonds synthesized from<br>various carbons under high pressure and high temperature. Journal of Materials Research, 2007, 22,<br>2345-2351. | 1.2  | 168       |

T Irifune

| #  | Article                                                                                                                                                                                                                 | IF   | CITATIONS |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 19 | Mineralogy of the Earth – Phase Transitions and Mineralogy of the Lower Mantle. , 2007, , 33-62.                                                                                                                        |      | 25        |
| 20 | Conditions and mechanism of formation of nano-polycrystalline diamonds on direct transformation<br>from graphite and non-graphitic carbon at high pressure and temperature. High Pressure Research,<br>2006, 26, 63-69. | 0.4  | 68        |
| 21 | In situ X-ray diffraction study of an aluminous phase in MORB under lower mantle conditions. Physics and Chemistry of Minerals, 2006, 33, 28-34.                                                                        | 0.3  | 14        |
| 22 | The phase boundary between wadsleyite and ringwoodite in Mg2SiO4 determined by in situ X-ray diffraction. Physics and Chemistry of Minerals, 2006, 33, 106-114.                                                         | 0.3  | 58        |
| 23 | High-temperature and high-pressure equation of state for the hexagonal phase in the system NaAlSiO4<br>– MgAl2O4. Physics and Chemistry of Minerals, 2005, 32, 594-602.                                                 | 0.3  | 22        |
| 24 | Microstructure features of polycrystalline diamond synthesized directly from graphite under static high pressure. Journal of Materials Science, 2004, 39, 445-450.                                                      | 1.7  | 112       |
| 25 | Indentation hardness of nano-polycrystalline diamond prepared from graphite by direct conversion.<br>Diamond and Related Materials, 2004, 13, 1771-1776.                                                                | 1.8  | 109       |
| 26 | Application of synchrotron radiation and Kawai-type apparatus to various studies in high-pressure mineral physics. Mineralogical Magazine, 2002, 66, 769-790.                                                           | 0.6  | 37        |
| 27 | In situ X-ray observations of phase transitions in MgAl 2 O 4 spinel to 40 GPa using multianvil apparatus with sintered diamond anvils. Physics and Chemistry of Minerals, 2002, 29, 645-654.                           | 0.3  | 68        |
| 28 | Phase relations and equations of state ofZrO2under high temperature and high pressure. Physical Review B, 2001, 63, .                                                                                                   | 1.1  | 140       |
| 29 | Determination of the phase boundary between ilmenite and perovskite in MgSiO 3 by in situ X-ray diffraction and quench experiments. Physics and Chemistry of Minerals, 2000, 27, 523-532.                               | 0.3  | 44        |
| 30 | High-pressure phase transformation in CaMgSi2O6and implications for origin of ultra-deep diamond inclusions. Geophysical Research Letters, 2000, 27, 3541-3544.                                                         | 1.5  | 38        |
| 31 | The Postspinel Phase Boundary in Mg2SiO4 Determined by in Situ X-ray Diffraction. Science, 1998, 279, 1698-1700.                                                                                                        | 6.0  | 251       |
| 32 | Subduction of continental crust and terrigenous and pelagic sediments: an experimental study. Earth and Planetary Science Letters, 1994, 126, 351-368.                                                                  | 1.8  | 264       |
| 33 | Phase transformations in subducted oceanic crust and buoyancy relationships at depths of 600–800 km in the mantle. Earth and Planetary Science Letters, 1993, 117, 101-110.                                             | 1.8  | 418       |
| 34 | A new high-pressure form of MgAl2O4. Nature, 1991, 349, 409-411.                                                                                                                                                        | 13.7 | 214       |
| 35 | Constraints on element partition coefficients between MgSiO3 perovskite and liquid determined by<br>direct measurements—reply to C.B. Agee and D. Walker. Earth and Planetary Science Letters, 1989, 94,<br>162-164.    | 1.8  | 10        |
| 36 | Nature of the 650–km seismic discontinuity: implications for mantle dynamics and differentiation.<br>Nature, 1988, 331, 131-136.                                                                                        | 13.7 | 295       |

T Irifune

| #  | Article                                                                                                                                                                                                                 | IF  | CITATIONS |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 37 | Experimental determination of element partitioning between silicate perovskites, garnets and liquids:<br>constraints on early differentiation of the mantle. Earth and Planetary Science Letters, 1988, 89,<br>123-145. | 1.8 | 267       |
| 38 | Constraints on element partition coefficients between MgSiO3 perovskite and liquid determined by direct measurements. Earth and Planetary Science Letters, 1988, 90, 65-68.                                             | 1.8 | 96        |
| 39 | Phase transformations in a harzburgite composition to 26 GPa: implications for dynamical behaviour of the subducting slab. Earth and Planetary Science Letters, 1987, 86, 365-376.                                      | 1.8 | 214       |
| 40 | The eclogite-garnetite transformation at high pressure and some geophysical implications. Earth and Planetary Science Letters, 1986, 77, 245-256.                                                                       | 1.8 | 225       |