Vincent Setola

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/10783712/publications.pdf

Version: 2024-02-01

		172457	168389
55	5,283	29	53
papers	citations	h-index	g-index
66	66	66	7574
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Predicting new molecular targets for known drugs. Nature, 2009, 462, 175-181.	27.8	1,474
2	Automated design of ligands to polypharmacological profiles. Nature, 2012, 492, 215-220.	27.8	698
3	Discovery of β-Arrestin–Biased Dopamine D ₂ Ligands for Probing Signal Transduction Pathways Essential for Antipsychotic Efficacy. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 18488-18493.	7.1	312
4	3,4-Methylenedioxymethamphetamine (MDMA, "Ecstasyâ€) Induces Fenfluramine-Like Proliferative Actions on Human Cardiac Valvular Interstitial Cells in Vitro. Molecular Pharmacology, 2003, 63, 1223-1229.	2.3	263
5	Serotonin receptors and heart valve disease—It was meant 2B. , 2011, 132, 146-157.		175
6	Evidence for the Involvement of Dopamine Transporters in Behavioral Stimulant Effects of Modafinil. Journal of Pharmacology and Experimental Therapeutics, 2009, 329, 738-746.	2.5	169
7	Identifying mechanism-of-action targets for drugs and probes. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 11178-11183.	7.1	156
8	Neurochemical profiles of some novel psychoactive substances. European Journal of Pharmacology, 2013, 700, 147-151.	3.5	150
9	Serotonin 5-HT _{2B} Receptors Are Required for 3,4-Methylenedioxymethamphetamine-Induced Hyperlocomotion and 5-HT Release <i>In Vivo</i> and <i>In Vitro</i> Journal of Neuroscience, 2008, 28, 2933-2940.	3.6	136
10	The Ketamine Analogue Methoxetamine and 3- and 4-Methoxy Analogues of Phencyclidine Are High Affinity and Selective Ligands for the Glutamate NMDA Receptor. PLoS ONE, 2013, 8, e59334.	2.5	132
11	Parallel Functional Activity Profiling Reveals Valvulopathogens Are Potent 5-Hydroxytryptamine _{2B} Receptor Agonists: Implications for Drug Safety Assessment. Molecular Pharmacology, 2009, 76, 710-722.	2.3	125
12	Structure–Functional Selectivity Relationship Studies of β-Arrestin-Biased Dopamine D ₂ Receptor Agonists. Journal of Medicinal Chemistry, 2012, 55, 7141-7153.	6.4	118
13	Chemical informatics and target identification in a zebrafish phenotypic screen. Nature Chemical Biology, 2012, 8, 144-146.	8.0	113
14	Serotonin and Angiotensin Receptors in Cardiac Fibroblasts Coregulate Adrenergic-Dependent Cardiac Hypertrophy. Circulation Research, 2009, 104, 113-123.	4.5	107
15	5-HT2B antagonism arrests non-canonical TGF- \hat{I}^21 -induced valvular myofibroblast differentiation. Journal of Molecular and Cellular Cardiology, 2012, 53, 707-714.	1.9	92
16	Exome Sequencing in 53 Sporadic Cases of Schizophrenia Identifies 18 Putative Candidate Genes. PLoS ONE, 2014, 9, e112745.	2.5	79
17	Design, Synthesis, and Validation of a β-Turn Mimetic Library Targeting Protein–Protein and Peptide–Receptor Interactions. Journal of the American Chemical Society, 2011, 133, 10184-10194.	13.7	74
18	Molecular Determinants for the Interaction of the Valvulopathic Anorexigen Norfenfluramine with the 5-HT2B Receptor. Molecular Pharmacology, 2005, 68, 20-33.	2.3	73

#	Article	IF	Citations
19	Identification of Human <i>Ether-Ã-go-go</i> Related Gene Modulators by Three Screening Platforms in an Academic Drug-Discovery Setting. Assay and Drug Development Technologies, 2010, 8, 727-742.	1.2	67
20	The Presynaptic Component of the Serotonergic System is Required for Clozapine's Efficacy. Neuropsychopharmacology, 2011, 36, 638-651.	5.4	63
21	Structural Determinants of G-protein α Subunit Selectivity by Regulator of G-protein Signaling 2 (RGS2). Journal of Biological Chemistry, 2009, 284, 19402-19411.	3.4	62
22	1,2,3,4-Tetrahydrocarbazoles as 5-HT6 serotonin receptor ligands. Bioorganic and Medicinal Chemistry Letters, 2004, 14, 1961-1964.	2.2	46
23	Screening the receptorome reveals molecular targets responsible for drug-induced side effects: focus on †fen†phenâ€. Expert Opinion on Drug Metabolism and Toxicology, 2005, 1, 377-387.	3.3	39
24	Identification and Validation of Small Molecules That Enhance Recombinant Adeno-associated Virus Transduction following High-Throughput Screens. Journal of Virology, 2016, 90, 7019-7031.	3.4	39
25	Development, Validation, and Use of Quantitative Structureâ [^] 'Activity Relationship Models of 5-Hydroxytryptamine (2B) Receptor Ligands to Identify Novel Receptor Binders and Putative Valvulopathic Compounds among Common Drugs. Journal of Medicinal Chemistry, 2010, 53, 7573-7586.	6.4	38
26	An analysis of the synthetic tryptamines AMT and 5-MeO-DALT: Emerging â€~Novel Psychoactive Drugs'. Bioorganic and Medicinal Chemistry Letters, 2013, 23, 3411-3415.	2.2	36
27	Why Mice Are Neither Miniature Humans nor Small Rats: A Cautionary Tale Involving 5-Hydroxytryptamine-6 Serotonin Receptor Species Variants: Fig. 1 Molecular Pharmacology, 2003, 64, 1277-1278.	2.3	35
28	Preclinical Testing of Nalfurafine as an Opioid-sparing Adjuvant that Potentiates Analgesia by the Mu Opioid Receptor-targeting Agonist Morphine. Journal of Pharmacology and Experimental Therapeutics, 2019, 371, 487-499.	2.5	35
29	Multi-receptor drug design: Haloperidol as a scaffold for the design and synthesis of atypical antipsychotic agents. Bioorganic and Medicinal Chemistry, 2012, 20, 1291-1297.	3.0	32
30	N1-Benzenesulfonylgramine and N1-benzenesulfonylskatole: novel 5-HT6 receptor ligand templates. Bioorganic and Medicinal Chemistry Letters, 2003, 13, 3355-3359.	2.2	31
31	Role of the N-Terminal Region in G Protein–Coupled Receptor Functions: Negative Modulation Revealed by 5-HT2BReceptor Polymorphisms. Molecular Pharmacology, 2014, 85, 127-138.	2.3	27
32	Bis-spirolabdane Diterpenoids from <i>Leonotis nepetaefolia</i> . Journal of Natural Products, 2012, 75, 728-734.	3.0	25
33	Single Nucleotide Polymorphisms in Chemosensory Pathway Genes GNB3, TAS2R19, and TAS2R38 Are Associated with Chronic Rhinosinusitis. International Archives of Allergy and Immunology, 2019, 180, 72-78.	2.1	25
34	Identification of a new selective dopamine D4 receptor ligand. Bioorganic and Medicinal Chemistry, 2014, 22, 3105-3114.	3.0	24
35	Benzothiazoles as probes for the 5HT1A receptor and the serotonin transporter (SERT): A search for new dual-acting agents as potential antidepressants. European Journal of Medicinal Chemistry, 2012, 53, 124-132.	5.5	23
36	Structure–activity relationship studies of SYA 013, a homopiperazine analog of haloperidol. Bioorganic and Medicinal Chemistry, 2012, 20, 1671-1678.	3.0	23

#	Article	IF	CITATIONS
37	<i>N</i> -Alkyl-octahydroisoquinolin-1-one-8-carboxamides: Selective and Nonbasic κ-Opioid Receptor Ligands. ACS Medicinal Chemistry Letters, 2010, 1, 189-193.	2.8	22
38	Michael acceptor approach to the design of new salvinorin A-based high affinity ligands for the kappa-opioid receptor. European Journal of Medicinal Chemistry, 2014, 85, 818-829.	5.5	21
39	Regulator of G protein signaling-12 modulates the dopamine transporter in ventral striatum and locomotor responses to psychostimulants. Journal of Psychopharmacology, 2018, 32, 191-203.	4.0	15
40	Role of RGS12 in the differential regulation of kappa opioid receptor-dependent signaling and behavior. Neuropsychopharmacology, 2019, 44, 1728-1741.	5.4	15
41	Synthesis and evaluation of ligands for D2-like receptors: The role of common pharmacophoric groups. Bioorganic and Medicinal Chemistry, 2009, 17, 1716-1723.	3.0	13
42	Further evaluation of the tropane analogs of haloperidol. Bioorganic and Medicinal Chemistry Letters, 2014, 24, 4294-4297.	2.2	13
43	A role for Regulator of G protein Signaling-12 (RGS12) in the balance between myoblast proliferation and differentiation. PLoS ONE, 2019, 14, e0216167.	2.5	10
44	N-Tetrahydrothiochromenoisoxazole-1-carboxamides as selective antagonists of cloned human 5-HT2B. Bioorganic and Medicinal Chemistry Letters, 2010, 20, 5488-5490.	2.2	8
45	Preclinical Studies on Nalfurafine (TRK-820), a Clinically Used KOR Agonist. Handbook of Experimental Pharmacology, 2021, 271, 137-162.	1.8	8
46	5-ZATRYPTAMINE ANALOGS AS h5-HT6 SEROTONIN RECEPTOR LIGANDS. Medicinal Chemistry Research, 2005, 14, 1-18.	2.4	7
47	RGS21, a regulator of taste and mucociliary clearance?. Laryngoscope, 2014, 124, E56-63.	2.0	7
48	Development of Full Sweet, Umami, and Bitter Taste Responsiveness Requires Regulator of G protein Signaling-21 (RGS21). Chemical Senses, 2018, 43, 367-378.	2.0	7
49	Four single nucleotide polymorphisms in genes involved in neuronal signaling are associated with opioid use disorder in West Virginia. Journal of Opioid Management, 2019, 15, 103-109.	0.5	4
50	Genetic deletion of <i>Rgs12 </i> in mice affects serotonin transporter expression and function <i <="" i="" in="" vivo="">i>and <i>ex vivo </i>. Journal of Psychopharmacology, 2020, 34, 1393-1407.</i>	4.0	2
51	Antagonism of the 5â€HT2B receptor prevents TGFâ€beta1 effects in aortic valve fibroblasts. FASEB Journal, 2011, 25, 177.5.	0.5	2
52	1,2,3,4-Tetrahydrocarbazoles as 5-HT6 Serotonin Receptor Ligands ChemInform, 2004, 35, no.	0.0	0
53	GPSM3 as a Therapeutic Target for Rheumatoid Arthritis. FASEB Journal, 2015, 29, .	0.5	0
54	The Biased Kappa Opioid Receptor Agonist Nalfurafine Reduces the Reinforcing Properties of Oxycodone and Enhances Oxycodoneâ€Induced Spinal Antiâ€Nociception. FASEB Journal, 2020, 34, 1-1.	0.5	0

ARTICLE IF CITATIONS

The Emergence of 5-HT2B Receptors as Targets to Avoid in Designing and Refining Pharmaceuticals.,

o