Norimoto Gotoh

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/10782128/publications.pdf

Version: 2024-02-01

47 papers 3,383 citations

201674 27 h-index 265206 42 g-index

48 all docs

48 docs citations

times ranked

48

4681 citing authors

#	Article	IF	CITATIONS
1	Effect of VCP modulators on gene expression profiles of retinal ganglion cells in an acute injury mouse model. Scientific Reports, 2020, 10, 4251.	3.3	4
2	Reduction of lipid accumulation rescues Bietti's crystalline dystrophy phenotypes. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, 3936-3941.	7.1	46
3	Screening for <i>SLC7A14</i> gene mutations in patients with autosomal recessive or sporadic retinitis pigmentosa. Ophthalmic Genetics, 2017, 38, 70-73.	1.2	3
4	CHOROIDAL AND RETINAL ATROPHY OF BIETTI CRYSTALLINE DYSTROPHY PATIENTS WITH CYP4V2 MUTATIONS COMPARED TO RETINITIS PIGMENTOSA PATIENTS WITH EYS MUTATIONS. Retina, 2017, 37, 1193-1202.	1.7	19
5	Genetic association study of exfoliation syndrome identifies a protective rare variant at LOXL1 and five new susceptibility loci. Nature Genetics, 2017, 49, 993-1004.	21.4	114
6	NRL-Regulated Transcriptome Dynamics of Developing Rod Photoreceptors. Cell Reports, 2016, 17, 2460-2473.	6.4	104
7	Evaluation of Photoreceptors in Bietti Crystalline Dystrophy with CYP4V2 Mutations Using Adaptive Optics Scanning Laser Ophthalmoscopy. American Journal of Ophthalmology, 2016, 161, 196-205.e1.	3.3	16
8	Next-generation sequencing-based comprehensive molecular analysis of 43 Japanese patients with cone and cone-rod dystrophies. Molecular Vision, 2016, 22, 150-60.	1.1	36
9	The Contribution of Genetic Architecture to the 10-Year Incidence of Age-Related Macular Degeneration in the Fellow Eye., 2015, 56, 5353.		13
10	Quantification of Oxygen Consumption in Retina Ex Vivo Demonstrates Limited Reserve Capacity of Photoreceptor Mitochondria., 2015, 56, 8428.		104
11	Radial fundus autofluorescence in the periphery in patients with X-linked retinitis pigmentosa. Clinical Ophthalmology, 2015, 9, 1467.	1.8	15
12	New loci and coding variants confer risk for age-related macular degeneration in East Asians. Nature Communications, 2015, 6, 6063.	12.8	147
13	A common variant mapping to CACNA1A is associated with susceptibility to exfoliation syndrome. Nature Genetics, 2015, 47, 387-392.	21.4	97
14	Next-Generation Sequencing-Based Molecular Diagnosis of Choroideremia. Case Reports in Ophthalmology, 2015, 6, 246-250.	0.7	7
15	CEP290 alleles in mice disrupt tissue-specific cilia biogenesis and recapitulate features of syndromic ciliopathies. Human Molecular Genetics, 2015, 24, 3775-3791.	2.9	105
16	Identification of myopia-associated WNT7B polymorphisms provides insights into the mechanism underlying the development of myopia. Nature Communications, 2015, 6, 6689.	12.8	70
17	Tomographic comparison of cone-rod and rod-cone retinal dystrophies. Graefe's Archive for Clinical and Experimental Ophthalmology, 2014, 252, 1065-1069.	1.9	12
18	Comprehensive Molecular Diagnosis of a Large Cohort of Japanese Retinitis Pigmentosa and Usher Syndrome Patients by Next-Generation Sequencing., 2014, 55, 7369.		140

#	Article	IF	CITATIONS
19	OTX2 loss causes rod differentiation defect in CRX-associated congenital blindness. Journal of Clinical Investigation, 2014, 124, 631-643.	8.2	59
20	Gene expression changes in aging retinal microglia: relationship to microglial support functions and regulation of activation. Neurobiology of Aging, 2013, 34, 2310-2321.	3.1	100
21	Developing Rods Transplanted into the Degenerating Retina of Crx-Knockout Mice Exhibit Neural Activity Similar to Native Photoreceptors. Stem Cells, 2013, 31, 1149-1159.	3.2	98
22	Association Between the Cholesteryl Ester Transfer Protein Gene and Polypoidal Choroidal Vasculopathy., 2013, 54, 6068.		23
23	Transcriptional Regulation of Rod Photoreceptor Homeostasis Revealed by In Vivo NRL Targetome Analysis. PLoS Genetics, 2012, 8, e1002649.	3.5	99
24	Significance of <i>C2</i> / <i>CFB</i> Variants in Age-Related Macular Degeneration and Polypoidal Choroidal Vasculopathy in a Japanese Population., 2012, 53, 794.		37
25	Preservation of Cone Photoreceptors after a Rapid yet Transient Degeneration and Remodeling in Cone-Only <i>Nrl</i> ^{â^'/â^'} Mouse Retina. Journal of Neuroscience, 2012, 32, 528-541.	3.6	51
26	Combining Cep290 and Mkks ciliopathy alleles in mice rescues sensory defects and restores ciliogenesis. Journal of Clinical Investigation, 2012, 122, 1233-1245.	8.2	75
27	Genetic Variants in Pigment Epithelium-Derived Factor Influence Response of Polypoidal Choroidal Vasculopathy to Photodynamic Therapy. Ophthalmology, 2011, 118, 1408-1415.	5.2	24
28	Association between the SERPING1 Gene and Age-Related Macular Degeneration and Polypoidal Choroidal Vasculopathy in Japanese. PLoS ONE, 2011, 6, e19108.	2.5	25
29	Haplotype analysis of the ARMS2/HTRA1 region in Japanese patients with typical neovascular age-related macular degeneration or polypoidal choroidal vasculopathy. Japanese Journal of Ophthalmology, 2010, 54, 609-614.	1.9	22
30	Monozygotic twins with polypoidal choroidal vasuculopathy. Clinical Ophthalmology, 2010, 4, 793.	1.8	5
31	<i>CFH</i> and <i>ARMS2</i> Variations in Age-Related Macular Degeneration, Polypoidal Choroidal Vasculopathy, and Retinal Angiomatous Proliferation., 2010, 51, 5914.		112
32	Genetic variants near <i>TIMP3</i> and high-density lipoprotein–associated loci influence susceptibility to age-related macular degeneration. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 7401-7406.	7.1	475
33	Distinct Signature of Altered Homeostasis in Aging Rod Photoreceptors: Implications for Retinal Diseases. PLoS ONE, 2010, 5, e13885.	2.5	35
34	A Genome-Wide Association Analysis Identified a Novel Susceptible Locus for Pathological Myopia at 11q24.1. PLoS Genetics, 2009, 5, e1000660.	3.5	131
35	ARMS2 (LOC387715) Variants in Japanese Patients with Exudative Age-related Macular Degeneration and Polypoidal Choroidal Vasculopathy. American Journal of Ophthalmology, 2009, 147, 1037-1041.e2.	3.3	84
36	Correlation between <i>CFH</i> Y402H and <i>HTRA1</i> rs11200638 genotype to typical exudative ageâ€related macular degeneration and polypoidal choroidal vasculopathy phenotype in the Japanese population. Clinical and Experimental Ophthalmology, 2008, 36, 437-442.	2.6	23

#	Article	IF	CITATION
37	Lysyl Oxidase-like 1 Polymorphisms and Exfoliation Syndrome in the Japanese Population. American Journal of Ophthalmology, 2008, 145, 582-585.e2.	3.3	112
38	MACULAR COMPLICATIONS ON THE BORDER OF AN INFERIOR STAPHYLOMA ASSOCIATED WITH TILTED DISC SYNDROME. Retina, 2008, 28, 1493-1501.	1.7	79
39	Correlation between CFH Y402H and HTRA1 rs11200638 genotype to typical exudative age-related macular degeneration and polypoidal choroidal vasculopathy phenotype in the Japanese population. Clinical and Experimental Ophthalmology, 2008, 36, 437-42.	2.6	35
40	Polypoidal choroidal vasculopathy appearing as classic choroidal neovascularisation on fluorescein angiography. British Journal of Ophthalmology, 2007, 91, 1152-1159.	3.9	41
41	Pigment Epithelial Detachment in Polypoidal Choroidal Vasculopathy. American Journal of Ophthalmology, 2007, 143, 102-111.e1.	3.3	112
42	Alterations of retinal pigment epithelium in central serous chorioretinopathy. Clinical and Experimental Ophthalmology, 2007, 35, 225-230.	2.6	67
43	Polypoidal choroidal vasculopathy examined with en face optical coherence tomography. Clinical and Experimental Ophthalmology, 2007, 35, 596-601.	2.6	29
44	Alterations of Retinal Pigment Epithelium in Central Serous Chorioretinopathy Treated by Laser Photocoagulation. Japanese Journal of Ophthalmology, 2007, 51, 477-478.	1.9	3
45	Polypoidal Choroidal Vasculopathy with Choroidal Vascular Hyperpermeability. American Journal of Ophthalmology, 2006, 142, 601-607.e1.	3.3	172
46	No association between complement factor H gene polymorphism and exudative age-related macular degeneration in Japanese. Human Genetics, 2006, 120, 139-143.	3.8	155
47	Apolipoprotein E polymorphisms in Japanese patients with polypoidal choroidal vasculopathy and exudative age-related macular degeneration. American Journal of Ophthalmology, 2004, 138, 567-573.	3.3	45