Am Manzoni

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1078167/publications.pdf Version: 2024-02-01

AM MANZONI

#	Article	IF	CITATIONS
1	Phase separation in equiatomic AlCoCrFeNi high-entropy alloy. Ultramicroscopy, 2013, 132, 212-215.	0.8	296
2	High-Temperature Tensile Strength of Al10Co25Cr8Fe15Ni36Ti6 Compositionally Complex Alloy (High-Entropy Alloy). Jom, 2015, 67, 2271-2277.	0.9	140
3	Investigation of phases in Al23Co15Cr23Cu8Fe15Ni16 and Al8Co17Cr17Cu8Fe17Ni33 high entropy alloys and comparison with equilibrium phases predicted by Thermo-Calc. Journal of Alloys and Compounds, 2013, 552, 430-436.	2.8	112
4	New multiphase compositionally complex alloys driven by the high entropy alloy approach. Materials Characterization, 2019, 147, 512-532.	1.9	95
5	On the Path to Optimizing the Al-Co-Cr-Cu-Fe-Ni-Ti High Entropy Alloy Family for High Temperature Applications. Entropy, 2016, 18, 104.	1.1	68
6	Microstructure and Tensile Behavior of Al8Co17Cr17Cu8Fe17Ni33 (at.%) High-Entropy Alloy. Jom, 2013, 65, 1805-1814.	0.9	66
7	Al ₈ Co ₁₇ Cr ₁₅ Cr ₁₅ Cr ₁₅ Cr ₁₇ Cr _{Cr₁₇Cr_{Cr<}}	1.6	60
8	Compositionally Complex Alloys (Algna Entropy Alloys) at Elevated Temperatures in Air. Advanced Formation of intermetallic δ phase in Al-10Si-0.3Fe alloy investigated by in-situ 4D X-ray synchrotron tomography. Acta Materialia, 2017, 129, 194-202.	3.8	53
9	Short-range chemical order and local lattice distortion in a compositionally complex alloy. Acta Materialia, 2020, 193, 329-337.	3.8	49
10	Influence of W, Mo and Ti trace elements on the phase separation in Al8Co17Cr17Cu8Fe17Ni33 based high entropy alloy. Ultramicroscopy, 2015, 159, 265-271.	0.8	43
11	Microstructure and Mechanical Properties of Precipitate Strengthened High Entropy Alloy Al10Co25Cr8Fe15Ni36Ti6 with Additions of Hafnium and Molybdenum. Entropy, 2019, 21, 169.	1.1	33
12	Welding of high-entropy alloys and compositionally complex alloys—an overview. Welding in the World, Le Soudage Dans Le Monde, 2021, 65, 1645-1659.	1.3	29
13	Plasmonic gold helices for the visible range fabricated by oxygen plasma purification of electron beam induced deposits. Nanotechnology, 2017, 28, 055303.	1.3	25
14	Tensile Behavior and Evolution of the Phases in the Al10Co25Cr8Fe15Ni36Ti6 Compositionally Complex/High Entropy Alloy. Entropy, 2018, 20, 646.	1.1	23
15	Influence of impurities, strontium addition and cooling rate on microstructure evolution in Al-10Si-0.3Fe casting alloys. Journal of Alloys and Compounds, 2018, 766, 818-827.	2.8	22
16	Micro/Nano Fabrication of Periodic Hierarchical Structures by Multiâ€Pulsed Laser Interference Structuring. Advanced Engineering Materials, 2007, 9, 872-875.	1.6	20
17	Evolution of γ/γ' phases, their misfit and volume fractions in Al10Co25Cr8Fe15Ni36Ti6 compositionally complex alloy. Materials Characterization, 2019, 154, 363-376.	1.9	18
18	Uniaxial mechanical properties of face-centered cubic single- and multiphase high-entropy alloys. MRS Bulletin, 2022, 47, 168-174.	1.7	15

Am Manzoni

#	Article	IF	CITATIONS
19	Constrained hierarchical twinning in Ru-based high temperature shape memory alloys. Acta Materialia, 2016, 111, 283-296.	3.8	12
20	Influence of high melting elements on microstructure, tensile strength and creep resistance of the compositionally complex alloy Al10Co25Cr8Fe15Ni36Ti6. Materials Chemistry and Physics, 2021, 274, 125163.	2.0	11
21	Temperature Dependent Solid Solution Strengthening in the High Entropy Alloy CrMnFeCoNi in Single Crystalline State. Metals, 2020, 10, 1412.	1.0	10
22	The effect of Fe additions on the shape memory properties of Ru-based alloys. Scripta Materialia, 2011, 64, 1071-1074.	2.6	9
23	Chemical interaction and electronic structure in a compositionally complex alloy: A case study by means of X-ray absorption and X-ray photoelectron spectroscopy. Journal of Alloys and Compounds, 2021, 857, 157597.	2.8	9
24	Temperature evolution of lattice misfit in Hf and Mo variations of the Al10Co25Cr8Fe15Ni36Ti6 compositionally complex alloy. Scripta Materialia, 2020, 188, 74-79.	2.6	8
25	Shape memory deformation mechanisms of Ru–Nb and Ru–Ta shape memory alloys with transformation temperatures. Intermetallics, 2014, 52, 57-63.	1.8	6
26	Positron annihilation investigation of thermal cycling induced martensitic transformation in NiTi shape memory alloy. Acta Materialia, 2021, 220, 117298.	3.8	6
27	Hierarchical phase separation behavior in a Ni-Si-Fe alloy. Acta Materialia, 2020, 195, 327-340.	3.8	5
28	High-Entropy Alloys: Balancing Strength and Ductility at Room Temperature. , 2022, , 441-453.		4
29	Shape recovery in high temperature shape memory alloys based on the Ru-Nb and Ru-Ta systems. , 2009, ,		4
30	Formation and evolution of hierarchical microstructures in a Ni-based superalloy investigated by in situ high-temperature synchrotron X-ray diffraction. Journal of Alloys and Compounds, 2022, 919, 165845.	2.8	4
31	On the Formation of Eutectics in Variations of the Al10Co25Cr8Fe15Ni36Ti6 Compositionally Complex Alloy. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2021, 52, 143-150.	1.1	3
32	Effects of heat treatment on microstructure, hardness and local structure in a compositionally complex alloy. Materials Chemistry and Physics, 2022, 276, 125432.	2.0	3
33	Early Material Damage in Equimolar CrMnFeCoNi in Mixed Oxidizing/Sulfiding Hot Gas Atmosphere. Advanced Engineering Materials, 2022, 24, .	1.6	2
34	Phase Transformation and Shape Memory Effect in Ru-Based High Temperature Shape Memory Alloys. Solid State Phenomena, 0, 172-174, 43-48.	0.3	1
35	Unexpected Constrained Twin Hierarchy in Equiatomic Ru-Based High Temperature Shape Memory Alloy Martensite. Materials Science Forum, 2013, 738-739, 195-199.	0.3	1
36	Martensite crystal structure in Ru-based high temperature shape memory alloys. Materials Characterization, 2018, 142, 109-114.	1.9	1