An Meza-Rocha

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/10778653/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Multicolor emission in Agmn+ clusters and Eu3+ activated ZnO–P2O5 glasses achieved under near ultraviolet light excitation. Optical Materials, 2022, 123, 111833.	1.7	2
2	Phosphors emitting light yellow (laser) and light white through sodium-magnesium-borotellurite glasses activated with Dy3+. Optical Materials, 2022, 123, 111930.	1.7	3
3	Optical and visible and near-infrared fluorescence aspects of Er3+, Tm3+, and Nd3+-doped B2O3-rich glasses for fiber amplifiers and NIR lasers. Journal of Materials Research and Technology, 2022, 18, 658-680.	2.6	10
4	Assessment of optical and fluorescence aspects of Er3+-doped multicomponent B2O3 glasses as active media for 1.532Ål¼m near-infrared optical amplifiers. Journal of Materials Research and Technology, 2022, 18, 3457-3477.	2.6	7
5	Warm-white, reddish-orange and orange light generation from lithium-aluminum-zinc phosphate glass tri-doped with Sm3+, Tb3+and Eu3+. Journal of Luminescence, 2022, 247, 118880.	1.5	6
6	Pr3+-doped B2O3-Bi2O3-ZnO-NaF glasses comprising alkali/mixed alkali oxides for potential warm white light generation, blue laser, and E-+S-+C-optical bands amplification applications. Journal of Materials Research and Technology, 2021, , .	2.6	14
7	Down-shifting and down-conversion emission properties of novel CdO–P2O5 invert glasses activated with Pr3+ and Pr3+/Yb3+ for photonic applications. Optical Materials, 2021, 116, 111009.	1.7	9
8	Survey of optical and fluorescence traits of Tm3+-doped alkali/mixed alkali oxides constituting B2O3-BaO-ZnO-LiF glasses for 0.45Âμm laser and 1.46Âμm fiber amplifier. Results in Physics, 2021, 26, 10434	3 ^{2.0}	11
9	Glass formation area of the CdO-CuCl2-V2O5 ternary system: optical properties as a function of CuCl2 content. Journal of Non-Crystalline Solids, 2021, 566, 120896.	1.5	0
10	Spectroscopic study of Er3+ doped borate glass system for green emission device, NIR laser, and optical amplifier applications. Journal of Luminescence, 2021, 238, 118216.	1.5	16
11	Effect of radiative energy transfer and direct excitation on the up-conversion and down-shifting emission properties of Er3+-doped Zn3(VO4)2. Journal of Luminescence, 2021, 238, 118239.	1.5	4
12	Spectroscopic analysis of Nd3+-doped cadmium-vanadate invert glasses for near-infrared laser applications. Journal of Non-Crystalline Solids, 2021, 572, 121085.	1.5	15
13	Analysis of fluorescence characteristics of Sm3+-doped B2O3-rich glasses for Orange-light-emitting diodes. Journal of Alloys and Compounds, 2021, 884, 161076.	2.8	27
14	Cold bluish white and blue emissions in Cu+-doped zinc phosphate glasses. Journal of Luminescence, 2020, 217, 116791.	1.5	18
15	White, yellow and reddish-orange light generation in lithium-aluminum-zinc phosphate glasses co-doped with Dy3+/Tb3+ and tri-doped with Dy3+/Tb3+/Eu3+. Journal of Luminescence, 2020, 219, 116882.	1.5	36
16	Lithium-aluminum-zinc phosphate glasses activated with Sm3+, Sm3+/Eu3+ and Sm3+/Tb3+ for reddish-orange and white light generation. Journal of Alloys and Compounds, 2020, 846, 156332.	2.8	27
17	Tunable white light emission in zinc phosphate glasses activated with <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" altimg="si1.svg"><mml:mrow><mml:msubsup><mml:mrow><mml:mtext>Ag</mml:mtext></mml:mrow><mml:m clusters and Sm3+. Journal of Luminescence. 2020. 222. 117104.</mml:m </mml:msubsup></mml:mrow></mml:math 	nrow> <mr< td=""><td>nl:mtext>n<</td></mr<>	nl:mtext>n<
18	Burstein Moss effect in CdO–V2O5–P2O: Er3+ glasses, and the Yb3+ concentration effect on up conversion and downshifting emissions. Journal of Alloys and Compounds, 2020, 834, 154966.	2.8	16

An Meza-Rocha

#	Article	IF	CITATIONS
19	Calcium-zinc phosphate glasses activated with Tb3+/Eu3+ for laser and white LED applications. Journal of Luminescence, 2019, 215, 116621.	1.5	28
20	Fluorescence features of Tm3+-doped multicomponent borosilicate and borotellurite glasses for blue laser and S-band optical amplifier applications. Optical Materials, 2019, 96, 109354.	1.7	18
21	Tunable white-light emission from Pr3+/Dy3+ co-doped B2O3 - TeO2 PbO - ZnO Li2O - Na2O glasses. Optical Materials, 2019, 88, 558-569.	1.7	32
22	Er3+/Dy3+ codoped B2O3-TeO2-PbO-ZnO-Li2O-Na2O glasses: Optical absorption and fluorescence features study for visible and near-infrared fiber laser applications. Journal of Non-Crystalline Solids, 2019, 503-504, 366-381.	1.5	31
23	Up and down-shifting emission properties of novel Er3+-doped CdO-V2O5-P2O5 glass system. Ceramics International, 2019, 45, 1609-1615.	2.3	23
24	Spectroscopic evaluation a new and novel Nd3+/Yb3+ co-doped CdO-V2O5 glass system for 1â€Î¼m laser application. Journal of Alloys and Compounds, 2019, 777, 886-893.	2.8	13
25	Lithium-aluminum-zinc phosphate glasses activated with Tb3+ and Tb3+/Eu3+ for green laser medium, reddish-orange and white phosphor applications. Optical Materials, 2018, 79, 358-365.	1.7	37
26	Nd3+-doped heavy metal oxide based multicomponent borate glasses for 1.06â€Î¼m solid-state NIR laser and O-band optical amplification applications. Optical Materials, 2018, 78, 142-159.	1.7	54
27	Development of sodium-zinc phosphate glasses doped with Dy3+, Eu3+ and Dy3+/Eu3+ for yellow laser medium, reddish-orange and white phosphor applications. Journal of Luminescence, 2018, 194, 231-239.	1.5	57
28	Effect of alkali/mixed alkali metal ions on the thermal and spectral characteristics of Dy3+:B2O3-PbO-Al2O3-ZnO glasses. Journal of Non-Crystalline Solids, 2018, 481, 191-201.	1.5	33
29	Spectroscopy evaluation of crystalline and amorphous Cd 2 V 2 O 7 as blue phosphors. Journal of Luminescence, 2018, 195, 234-239.	1.5	9
30	Optical spectroscopy of zinc phosphate films activated with Ce3+, Tb3+ and Mn2+ ions for white LED applications. Optical Materials, 2018, 84, 879-887.	1.7	6
31	Zinc phosphate glasses activated with Dy3+/Eu3+/Sm3+ and Tb3+/Eu3+/Sm3+ for reddish-orange and yellowish white phosphor applications. Journal of Luminescence, 2018, 203, 74-82.	1.5	13
32	Structural and optical studies of Er 3+ -doped alkali/alkaline oxide containing zinc boro-aluminosilicate glasses for 1.5Âμm optical amplifier applications. Optical Materials, 2017, 69, 401-419.	1.7	41
33	Reddish-orange and neutral/warm white light emitting phosphors: Eu 3+ , Dy 3+ and Dy 3+ /Eu 3+ in potassium-zinc phosphate glasses. Journal of Luminescence, 2017, 183, 341-347.	1.5	69
34	Green to white tunable light emitting phosphors: Dy 3+ /Tb 3+ in zinc phosphate glasses. Optical Materials, 2017, 64, 33-39.	1.7	39
35	Luminescence properties of Tb3+-doped zinc phosphate glasses for green laser application. Optical Materials, 2016, 58, 406-411.	1.7	73
36	White light generation through Zn(PO 3) 2 glass activated with Eu 3+ and Dy 3+. Journal of Luminescence, 2016, 176, 235-239.	1.5	41

#	Article	IF	CITATIONS
37	Reddish-orange, neutral and warm white emissions in Eu3+, Dy3+ and Dy3+/Eu3+ doped CdO-GeO2-TeO2 glasses. Solid State Sciences, 2016, 61, 70-76.	1.5	33
38	Blue and white light emission in Tm3+ and Tm3+/Dy3+ doped zinc phosphate glasses upon UV light excitation. Optical Materials, 2016, 58, 183-187.	1.7	48
39	Photoluminescent and electrical properties of novel Nd3+ doped ZnV2O6 and Zn2V2O7. Ceramics International, 2016, 42, 8425-8430.	2.3	21

 $_{40}$ Comment on Li+ co-doping effect on the photoluminescence time decay behavior of Y2O3:Er3+ films (J.) Tj ETQq0 0.0 rgBT /Overlock 10 $_{1.5}$ rgBT /Overlock 10

41	White light generation in Tb3+/Eu3+/Dy3+ triply-doped Zn(PO3)2 glass. Optical Materials, 2016, 51, 128-132.	1.7	47
42	Dependence of the up-conversion emission of Li+ co-doped Y2O3:Er3+ films with dopant concentration. Journal of Luminescence, 2015, 167, 352-359.	1.5	27
43	White light generation in Dy3+-and Ce3+/Dy3+-doped zinc–sodium–aluminosilicate glasses. Journal of Luminescence, 2015, 167, 327-332.	1.5	60
44	Orange and reddish-orange light emitting phosphors: Sm3+ and Sm3+/Eu3+ doped zinc phosphate glasses. Journal of Luminescence, 2015, 167, 305-309.	1.5	59
45	Red–orange to green tunable upconversion emission from HfO2 ceramics embedded in polyester films. Ceramics International, 2015, 41, 12331-12339.	2.3	7
46	Neutral and warm white light emission in Tb3+/Sm3+ zinc phosphate glasses. Optical Materials, 2015, 47, 537-542.	1.7	55
47	Visible and near infra-red luminescent emission from Y2O3:Er3+ films co-doped with Li+ and their elemental composition by ion beam analysis. Ceramics International, 2014, 40, 14647-14653.	2.3	7
48	Li+ co-doping effect on the photoluminescence time decay behavior of Y2O3:Er3+ films. Journal of Luminescence, 2014, 154, 106-110.	1.5	12
49	Enhanced photoluminescence of Y2O3:Er3+ thin films by Li+ co-doping. Journal of Luminescence, 2013, 141, 173-176.	1.5	22