Ioannis Deretzis

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1077789/publications.pdf

Version: 2024-02-01

201385 223531 2,579 119 27 46 citations h-index g-index papers 120 120 120 4121 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	An Experimental Evaluation of Resistive Defects and Different Testing Solutions in Low-Power Back-Biased SRAM Cells. Electronics (Switzerland), 2022, 11, 203.	1.8	1
2	Multiscale modeling of ultrafast melting phenomena. Npj Computational Materials, 2022, 8, .	3.5	10
3	Blackâ€Yellow Bandgap Tradeâ€Off During Thermal Stability Tests in Lowâ€Temperature Euâ€Doped CsPbl ₃ . Solar Rrl, 2022, 6, .	3.1	8
4	Outâ€ofâ€Glovebox Integration of Recyclable Europiumâ€Doped CsPbI ₃ in Tripleâ€Mesoscopic Carbonâ€Based Solar Cells Exceeding 9% Efficiency. Solar Rrl, 2022, 6, .	3.1	9
5	Two-step MAPbl ₃ deposition by low-vacuum proximity-space-effusion for high-efficiency inverted semitransparent perovskite solar cells. Journal of Materials Chemistry A, 2021, 9, 16456-16469.	5.2	25
6	Continuum modeling and TCAD simulations of laser-related phenomena in CMOS applications. , 2021, , 251-291.		0
7	CsPbBr ₃ , MAPbBr ₃ , and FAPbBr ₃ Bromide Perovskite Single Crystals: Interband Critical Points under Dry N ₂ and Optical Degradation under Humid Air. Journal of Physical Chemistry C, 2021, 125, 4938-4945.	1.5	26
8	Optical behaviour of \hat{I}^3 -black CsPbI (sub) 3 (/sub) phases formed by quenching from 80 \hat{A}° C and 325 \hat{A}° C. JPhys Materials, 2021, 4, 034011.	1.8	6
9	Formation of CsPbI ₃ γâ€Phase at 80 °C by Europiumâ€Assisted Snowplow Effect. Advanced Energy and Sustainability Research, 2021, 2, 2100091.	2.8	8
10	Exploring the Structural Competition between the Black and the Yellow Phase of CsPbI3. Nanomaterials, 2021, 11, 1282.	1.9	12
11	Simulations of the Ultra-Fast Kinetics in Ni-Si-C Ternary Systems under Laser Irradiation. Materials, 2021, 14, 4769.	1.3	6
12	MAPbl3 Deposition by LV-PSE on TiO2 for Photovoltaic Application. Frontiers in Electronics, 2021, 2, .	2.0	1
13	New Approaches and Understandings in the Growth of Cubic Silicon Carbide. Materials, 2021, 14, 5348.	1.3	34
14	Molecular dynamics simulations supporting the development of a continuum model of heat transport in nanowires. , $2021, \ldots$		1
15	Extensive Fermiâ€Level Engineering for Graphene through the Interaction with Aluminum Nitrides and Oxides. Physica Status Solidi - Rapid Research Letters, 2020, 14, 1900399.	1.2	5
16	Wet Environment Effects for Ethanol and Water Adsorption on Anatase TiO ₂ (101) Surfaces. Journal of Physical Chemistry C, 2020, 124, 2406-2419.	1.5	24
17	TiO ₂ Colloids Laser-Treated in Ethanol for Photocatalytic H ₂ Production. ACS Applied Nano Materials, 2020, 3, 9127-9140.	2.4	14
18	Improved Electrical and Structural Stability in HTL-Free Perovskite Solar Cells by Vacuum Curing Treatment. Energies, 2020, 13, 3953.	1.6	7

#	Article	IF	CITATIONS
19	Temperature-Dependent Optical Band Gap in CsPbBr ₃ , MAPbBr ₃ , and FAPbBr ₃ Single Crystals. Journal of Physical Chemistry Letters, 2020, 11, 2490-2496.	2.1	173
20	Impact of Stacking Faults and Domain Boundaries on the Electronic Transport in Cubic Silicon Carbide Probed by Conductive Atomic Force Microscopy. Advanced Electronic Materials, 2020, 6, 1901171.	2.6	25
21	Local Order and Rotational Dynamics in Mixed A-Cation Lead Iodide Perovskites. Journal of Physical Chemistry Letters, 2020, 11, 1068-1074.	2.1	31
22	Genesis and evolution of extended defects: The role of evolving interface instabilities in cubic SiC. Applied Physics Reviews, 2020, 7, 021402.	5.5	35
23	Full Efficiency Recovery in Hole-Transporting Layer-Free Perovskite Solar Cells With Free-Standing Dry-Carbon Top-Contacts. Frontiers in Chemistry, 2020, 8, 200.	1.8	8
24	Phononic transport and simulations of annealing processes in nanometric complex structures. Physical Review Materials, 2020, 4, .	0.9	5
25	10.1063/1.5132300.1., 2020, , .		0
26	Molecular Dynamics Modeling of the Radial Heat Transfer from Silicon Nanowires. , 2020, , .		1
27	Advanced simulations on laser annealing: explosive crystallization and phonon transport corrections., 2020,,.		2
28	High-Performance Graphene/AlGaN/GaN Schottky Junctions for Hot Electron Transistors. ACS Applied Electronic Materials, 2019, 1, 2342-2354.	2.0	35
29	Coupled molecular-dynamics and finite-element-method simulations for the kinetics of particles subjected to field-mediated forces. Physical Review E, 2019, 99, 063307.	0.8	2
30	Pb clustering and PbI2 nanofragmentation during methylammonium lead iodide perovskite degradation. Nature Communications, 2019, 10, 2196.	5.8	116
31	Seedâ€Layerâ€Free Atomic Layer Deposition of Highly Uniform Al ₂ O ₃ Thin Films onto Monolayer Epitaxial Graphene on Silicon Carbide. Advanced Materials Interfaces, 2019, 6, 1900097.	1.9	24
32	Nitrogen Soaking Promotes Lattice Recovery inÂPolycrystalline Hybrid Perovskites. Advanced Energy Materials, 2019, 9, 1803450.	10.2	46
33	Tailoring Active Defect Centers During the Growth of Group IV Crystals. Proceedings (mdpi), 2019, 12, 32.	0.2	0
34	Simulation of the Growth Kinetics in Group IV Compound Semiconductors. Physica Status Solidi (A) Applications and Materials Science, 2019, 216, 1800597.	0.8	6
35	Theoretical study of the laser annealing process in FinFET structures. Applied Surface Science, 2019, 467-468, 666-672.	3.1	31
36	Phase field model of the nanoscale evolution during the explosive crystallization phenomenon. Journal of Applied Physics, 2018, 123, .	1.1	28

#	Article	IF	CITATIONS
37	Fabrication and Characterization of Graphene Heterostructures with Nitride Semiconductors for High Frequency Vertical Transistors. Physica Status Solidi (A) Applications and Materials Science, 2018, 215, 1700653.	0.8	14
38	Anisotropic ultraviolet-plasmon dispersion in black phosphorus. Nanoscale, 2018, 10, 21918-21927.	2.8	18
39	Stability and Degradation in Hybrid Perovskites: Is the Glass Half-Empty or Half-Full?. Journal of Physical Chemistry Letters, 2018, 9, 3000-3007.	2.1	102
40	Nanoscale electrical mapping of two-dimensional materials by conductive atomic force microscopy for transistors applications. AIP Conference Proceedings, 2018, , .	0.3	4
41	Electron trapping at SiO ₂ /4H-SiC interface probed by transient capacitance measurements and atomic resolution chemical analysis. Nanotechnology, 2018, 29, 395702.	1.3	22
42	Oxygen Functionalities Evolution in Thermally Treated Graphene Oxide Featured by EELS and DFT Calculations. Journal of Physical Chemistry C, 2017, 121, 5408-5414.	1.5	40
43	A Comparison Between Quantum Transport and Band Structure Unfolding in Defected Graphene Nanoribbons. , 2017, , 185-194.		О
44	Nonequilibrium Steady States and Electron Transport in Molecular Systems., 2017,, 127-150.		0
45	Exploring the orthorhombic–tetragonal phase transition in CH3NH3PbI3: the role of atom kinetics. Nanoscale, 2017, 9, 5896-5903.	2.8	22
46	Revealing a Discontinuity in the Degradation Behavior of CH ₃ NH ₃ Pbl ₃ during Thermal Operation. Journal of Physical Chemistry C, 2017, 121, 13577-13585.	1.5	37
47	Ambipolar MoS ₂ Transistors by Nanoscale Tailoring of Schottky Barrier Using Oxygen Plasma Functionalization. ACS Applied Materials & Samp; Interfaces, 2017, 9, 23164-23174.	4.0	81
48	First Evidence of CH ₃ NH ₃ Pbl ₃ Optical Constants Improvement in a N ₂ Environment in the Range 40–80 °C. Journal of Physical Chemistry C, 2017, 121, 7703-7710.	1.5	49
49	Atom by Atom Simulations of Nanomaterial Manipulation: The Plasma Etching Case. IEEE Nanotechnology Magazine, 2017, 16, 790-797.	1.1	2
50	Role of H Distribution on Coherent Quantum Transport of Electrons in Hydrogenated Graphene. Condensed Matter, 2017, 2, 37.	0.8	4
51	Ab Initio Calculations and Kinetic Process Simulations of Nitrogen-Doped Graphene. Carbon Nanostructures, 2017, , 61-69.	0.1	O
52	Atom by atom simulations of nano-materials processing. , 2016, , .		0
53	Absorption edges of black phosphorus: A comparative analysis. Physica Status Solidi (B): Basic Research, 2016, 253, 2509-2514.	0.7	24
54	The Interaction between Graphene and the SiC Substrate: <i>Ab Initio</i> Calculations for Polar and Nonpolar Surfaces. Materials Science Forum, 2016, 858, 1125-1128.	0.3	0

#	Article	IF	CITATIONS
55	Spontaneous bidirectional ordering of CH3NH3+ in lead iodide perovskites at room temperature: The origins of the tetragonal phase. Scientific Reports, 2016, 6, 24443.	1.6	37
56	Stability of solution-processed MAPbI ₃ and FAPbI ₃ layers. Physical Chemistry Chemical Physics, 2016, 18, 13413-13422.	1.3	208
57	From Pbl ₂ to MAPbl ₃ through Layered Intermediates. Journal of Physical Chemistry C, 2016, 120, 19768-19777.	1.5	26
58	Simulating structural transitions with kinetic Monte Carlo: The case of epitaxial graphene on SiC. Physical Review E, 2016, 93, 033304.	0.8	10
59	Kinetic Monte Carlo simulations of vacancy evolution in graphene. Materials Science in Semiconductor Processing, 2016, 42, 179-182.	1.9	7
60	Electron Quantum Transport in Disordered Graphene. Mathematics in Industry, 2016, , 3-12.	0.1	0
61	STEM and EELS Investigation on Black Phosphorus at Atomic Resolution. Microscopy and Microanalysis, 2015, 21, 427-428.	0.2	4
62	Interface disorder probed at the atomic scale for graphene grown on the C face of SiC. Physical Review B, 2015, 91 , .	1.1	20
63	Similar Structural Dynamics for the Degradation of CH ₃ NH ₃ PbI ₃ in Air and in Vacuum. ChemPhysChem, 2015, 16, 3064-3071.	1.0	80
64	Atomistic origins of CH3NH3Pbl3 degradation to Pbl2 in vacuum. Applied Physics Letters, 2015, 106, .	1.5	158
65	Texture of MAPbl ₃ Layers Assisted by Chloride on Flat TiO ₂ Substrates. Journal of Physical Chemistry C, 2015, 119, 19808-19816.	1.5	36
66	Electron energy-loss spectra of graphene oxide for the determination of oxygen functionalities. Carbon, 2015, 93, 1034-1041.	5.4	36
67	Micro-Raman characterization of graphene grown on SiC(000-1). , 2014, , .		0
68	Atomic Scale Imaging and Energy Loss Spectroscopy of Epitaxial Graphene. Materials Research Society Symposia Proceedings, 2014, 1714, 1.	0.1	0
69	Structural and electronic inhomogeneity for graphene grown on the C-face of SiC: Insights from ab initio calculations. Applied Surface Science, 2014, 291, 69-73.	3.1	6
70	Electronic properties of epitaxial graphene residing on SiC facets probed by conductive atomic force microscopy. Applied Surface Science, 2014, 291, 53-57.	3.1	12
71	Origin and impact of sublattice symmetry breaking in nitrogen-doped graphene. Physical Review B, 2014, 89, .	1.1	15
72	Role of basis sets on the unfolding of supercell band structures: From tight-binding to density functional theory. Europhysics Letters, 2014, 107, 27006.	0.7	17

#	Article	IF	Citations
73	High resolution study of structural and electronic properties of epitaxial graphene grown on off-axis 4H–SiC (0001). Journal of Crystal Growth, 2014, 393, 150-155.	0.7	11
74	Observation of layer by layer graphitization of 4H-SiC, through atomic-EELS at low energy. Microscopy and Microanalysis, 2014, 20, 560-561.	0.2	0
75	Direct growth of quasi-free-standing epitaxial graphene on nonpolar SiC surfaces. Physical Review B, 2013, 88, .	1.1	43
76	Interaction between hydrogen flux and carbon monolayer on SiC(0001): graphene formation kinetics. Nanoscale, 2013, 5, 671-680.	2.8	18
77	Delaminated Graphene at Silicon Carbide Facets: Atomic Scale Imaging and Spectroscopy. ACS Nano, 2013, 7, 3045-3052.	7.3	73
78	Impact of Substrate Steps and of Monolayer-Bilayer Junctions on the Electronic Transport in Epitaxial Graphene on 4H-SiC (0001). Materials Science Forum, 2013, 740-742, 113-116.	0.3	2
79	A density functional theory study of epitaxial graphene on the $(3\tilde{A}-3)$ -reconstructed C-face of SiC. Applied Physics Letters, 2013, 102, 093101.	1.5	13
80	Process simulation of hydrogen intercalation in epitaxial graphene on SiC(0001). Physica Status Solidi (B): Basic Research, 2013, 250, 1478-1482.	0.7	4
81	Atomic-Scale Analysis of Chemical Bonding of Delaminated Graphene at Faceted SiC by Aberration-Corrected Scanning Transmission Electron Microscopy. Microscopy and Microanalysis, 2013, 19, 1238-1239.	0.2	0
82	Coupled Monte Carlo-Poisson method for the simulation of particle-particle effects in dielectrophoretic devices. Applied Physics Letters, 2012, 100, .	1.5	22
83	Electron backscattering from stacking faults in SiC by means ofab initioquantum transport calculations. Physical Review B, 2012, 85, .	1.1	31
84	Electronic transport at monolayer-bilayer junctions in epitaxial graphene on SiC. Physical Review B, 2012, 86, .	1.1	85
85	On the determination of diameter distribution in multiâ€wall carbon nanotubes by Raman spectroscopy: issues related to excitation laser energy. Journal of Raman Spectroscopy, 2012, 43, 1018-1023.	1.2	3
86	Electronic transport signatures of common defects in irradiated graphene-based systems. Nuclear Instruments & Methods in Physics Research B, 2012, 282, 108-111.	0.6	3
87	Quantum transport modeling of defected graphene nanoribbons. Physica E: Low-Dimensional Systems and Nanostructures, 2012, 44, 981-984.	1.3	9
88	Interface Electronic Differences Between Epitaxial Graphene Systems Grown on the Si and the C Face of SiC. Carbon Nanostructures, 2012, , 51-56.	0.1	0
89	Coherent electron transport in quasi one-dimensional carbon-based systems. European Physical Journal B, 2011, 81, 15-36.	0.6	13
90	Ion beam induced defects in graphene: Raman spectroscopy and DFT calculations. Journal of Molecular Structure, 2011, 993, 506-509.	1.8	25

#	Article	IF	CITATIONS
91	Theoretical study of the role of metallic contacts in probing transport features of pure and defected graphene nanoribbons. Nanoscale Research Letters, 2011, 6, 234.	3.1	8
92	Role of covalent and metallic intercalation on the electronic properties of epitaxial graphene on SiC(0001). Physical Review B, 2011, 84, .	1.1	47
93	Single-layer metallicity and interface magnetism of epitaxial graphene on SiC(0001 \hat{A}^-). Applied Physics Letters, 2011, 98, 023113.	1.5	8
94	<i>Ab Initio</i> Study of Ge Intercalation in Epitaxial Graphene on SiC(0001). Applied Physics Express, 2011, 4, 125101.	1.1	10
95	Ab Initio Prediction of Boron Compounds Arising from Borozene: Structural and Electronic Properties. Nanoscale Research Letters, 2010, 5, 158-163.	3.1	14
96	Lack of universal conductance features in disordered graphene nanoribbons. Physica Status Solidi C: Current Topics in Solid State Physics, 2010, 7, NA-NA.	0.8	1
97	A multiscale study of electronic structure and quantum transport in C _{6<i>n</i>} -based graphene quantum dots. Journal of Physics Condensed Matter, 2010, 22, 095504.	0.7	13
98	Atomistic quantum transport modeling of metal-graphene nanoribbon heterojunctions. Physical Review B, 2010, 82, .	1.1	9
99	Effects due to backscattering and pseudogap features in graphene nanoribbons with single vacancies. Physical Review B, 2010, 81, .	1.1	54
100	Insulator-metal transition in biased finite polyyne systems. European Physical Journal B, 2009, 70, 311-316.	0.6	13
101	Electronic structure of epitaxial graphene nanoribbons on SiC(0001). Applied Physics Letters, 2009, 95, 063111.	1.5	17
102	Conductance distribution in doped and defected graphene nanoribbons. Physical Review B, 2009, 80, .	1.1	37
103	Electronic transport in carbon nanotube based nano-devices. Physica E: Low-Dimensional Systems and Nanostructures, 2008, 40, 2333-2338.	1.3	17
104	A polaron model of the electronic transport in a nanotube quantum dot. Physica E: Low-Dimensional Systems and Nanostructures, 2008, 40, 2289-2293.	1.3	4
105	Nonequilibrium aspects of armchair graphene nanoribbon conduction. Materials Science in Semiconductor Processing, 2008, 11, 190-194.	1.9	1
106	Bias-driven local density of states alterations and transport in ballistic molecular devices. Journal of Chemical Physics, 2008, 128, 164706.	1.2	14
107	Violation of the single-parameter scaling hypothesis in disordered graphene nanoribbons. Physical Review B, 2008, 78, .	1.1	12
108	Phonon Driven Nonlinear Electrical Behavior in Molecular Devices. Physical Review Letters, 2007, 99, 136404.	2.9	30

#	Article	IF	CITATIONS
109	Nonequilibrium electron charging in carbon-nanotube-based molecular bridges. Applied Physics Letters, 2007, 91, 163111.	1.5	6
110	Electron transport properties of calix[4]arene based systems in a metal–molecule–metal junction. New Journal of Chemistry, 2007, 31, 756-761.	1.4	3
111	Effects of interface bonding on the conductance of metal–carbon nanotube–metal systems. Materials Science and Engineering C, 2007, 27, 1102-1107.	3.8	2
112	ELECTRONIC TRANSPORT CALCULATION OF FINITE SINGLE-WALLED CARBON NANOTUBE SYSTEMS IN THE TWO-TERMINAL GEOMETRY. , 2007, , .		0
113	Role of contact bonding on electronic transport in metal–carbon nanotube–metal systems. Nanotechnology, 2006, 17, 5063-5072.	1.3	44
114	Ultra-shallow junction by laser annealing: Integration issues and modelling. Nuclear Instruments & Methods in Physics Research B, 2006, 253, 1-8.	0.6	2
115	Origin of the Current Transport Anisotropy in Epitaxial Graphene Grown on Vicinal 4H-SiC (0001) Surfaces. Materials Science Forum, 0, 806, 103-107.	0.3	1
116	Atomistic Simulations and Interfacial Morphology of Graphene Grown on SiC(0001) and SiC(000-1) Substrates. Materials Science Forum, 0, 858, 1121-1124.	0.3	0
117	Interfacial Disorder of Graphene Grown at High Temperatures on 4H-SiC(000-1). Materials Science Forum, 0, 858, 1129-1132.	0.3	0
118	Multiscale Simulations of Plasma Etching in Silicon Carbide Structures. Materials Science Forum, 0, 1062, 214-218.	0.3	1
119	Computational Study of the Silicon Vacancy in 3C-SiC and Perspectives for Quantum Technologies. Materials Science Forum, 0, 1062, 309-314.	0.3	O