B Stephen Inbaraj

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/10777861/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Isolation of carotenoids, flavonoids and polysaccharides from Lycium barbarum L. and evaluation of antioxidant activity. Food Chemistry, 2010, 120, 184-192.	4.2	300
2	Adsorption of toxic mercury(II) by an extracellular biopolymer poly(γ-glutamic acid). Bioresource Technology, 2009, 100, 200-207.	4.8	214
3	Determination of carotenoids and their esters in fruits of Lycium barbarum Linnaeus by HPLC–DAD–APCI–MS. Journal of Pharmaceutical and Biomedical Analysis, 2008, 47, 812-818.	1.4	213
4	Nanomaterial-based sensors for detection of foodborne bacterial pathogens and toxins as wellÂas pork adulteration in meat products. Journal of Food and Drug Analysis, 2016, 24, 15-28.	0.9	197
5	Antioxidative activity of polysaccharide fractions isolated from Lycium barbarum Linnaeus. International Journal of Biological Macromolecules, 2009, 45, 146-151.	3.6	155
6	Simultaneous determination of phenolic acids and flavonoids in Lycium barbarum Linnaeus by HPLC–DAD–ESI-MS. Journal of Pharmaceutical and Biomedical Analysis, 2010, 51, 549-556.	1.4	139
7	Dye adsorption characteristics of magnetite nanoparticles coated with a biopolymer poly(\hat{I}^3 -glutamic) Tj ETQq1 1	0.784314	∔ rgβT /Overla
8	Improved high performance liquid chromatographic method for determination of carotenoids in the microalga Chlorella pyrenoidosa. Journal of Chromatography A, 2006, 1102, 193-199.	1.8	112
9	Carbonised jackfruit peel as an adsorbent for the removal of Cd(II) from aqueous solution. Bioresource Technology, 2004, 94, 49-52.	4.8	108
10	Mercury adsorption on a carbon sorbent derived from fruit shell of Terminalia catappa. Journal of Hazardous Materials, 2006, 133, 283-290.	6.5	108
11	Equilibrium and kinetic studies on sorption of basic dyes by a natural biopolymer poly(γ-glutamic acid). Biochemical Engineering Journal, 2006, 31, 204-215.	1.8	97
12	Removal of cationic dyes from aqueous solution using an anionic poly-Î ³ -glutamic acid-based adsorbent. Journal of Hazardous Materials, 2006, 137, 226-234.	6.5	91
13	Determination of flavonoids and saponins in Gynostemma pentaphyllum (Thunb.) Makino by liquid chromatography–mass spectrometry. Analytica Chimica Acta, 2008, 626, 200-211.	2.6	82
14	Surface modification of superparamagnetic iron nanoparticles with calcium salt of poly(\hat{I}^3 -glutamic) Tj ETQq0 0 0	rgBT /Ove	rlock 10 Tf 5?
15	Cytotoxicity and antibacterial activity of gold-supported cerium oxide nanoparticles. International Journal of Nanomedicine, 2014, 9, 5515.	3.3	54
16	Effects of temperature and pH on adsorption of basic brown 1 by the bacterial biopolymer poly(γ-glutamic acid). Bioresource Technology, 2008, 99, 1026-1035.	4.8	50

17	The synthesis and characterization of poly(\hat{I}^3 -glutamic acid)-coated magnetite nanoparticles and their effects on antibacterial activity and cytotoxicity. Nanotechnology, 2011, 22, 075101.	1.3	48
18	<i>In Vitro</i> Binding of Heavy Metals by an Edible Biopolymer Poly(Î ³ -glutamic acid). Journal of	2.4	46

Agricultural and Food Chemistry, 2009, 57, 777-784. 18 2.4

B Stephen Inbaraj

#	Article	IF	CITATIONS
19	Simultaneous determination of phenolic acids and flavonoids in Chenopodium formosanum Koidz. (djulis) by HPLC-DAD-ESI–MS/MS. Journal of Pharmaceutical and Biomedical Analysis, 2017, 132, 109-116.	1.4	42
20	Gas chromatography–mass spectrometry determination of conjugated linoleic acids and cholesterol oxides and their stability in a model system. Analytical Biochemistry, 2010, 400, 130-138.	1.1	35
21	Determination of phenolic acids and flavonoids in Rhinacanthus nasutus (L.) kurz by high-performance-liquid-chromatography with photodiode-array detection and tandem mass spectrometry. Journal of Functional Foods, 2015, 12, 498-508.	1.6	34
22	An improved high performance liquid chromatography–diode array detection–mass spectrometry method for determination of carotenoids and their precursors phytoene and phytofluene in human serum. Journal of Chromatography B: Analytical Technologies in the Biomedical and Life Sciences, 2012, 899, 36-45.	1.2	33
23	Determination of carotenoids in Taraxacum formosanum by HPLC–DAD–APCI-MS and preparation by column chromatography. Journal of Pharmaceutical and Biomedical Analysis, 2012, 66, 144-153.	1.4	30
24	Formation and Inhibition of Cholesterol Oxidation Products during Marinating of Pig Feet. Journal of Agricultural and Food Chemistry, 2012, 60, 173-179.	2.4	21
25	Effect of pH on Binding of Mutagenic Heterocyclic Amines by the Natural Biopolymer Poly(\hat{I}^3 -glutamic) Tj ETQq1 I	. 0.78431 2.4	4 rgBT /Ovei
26	Inhibition Effect of Poly(γ-glutamic acid) on Lead-Induced Toxicity in Mice. Journal of Agricultural and Food Chemistry, 2010, 58, 12562-12567.	2.4	12
27	Removal Potential of Basic Dyes and Lead from Water by Brewer's Yeast Biomass. Journal of the American Society of Brewing Chemists, 2019, 77, 30-39.	0.8	5
28	Comment on "Adsorption of Reactive Dyes from a Textile Effluent Using Sawdust as the Adsorbent― Industrial & Engineering Chemistry Research, 2006, 45, 7362-7362.	1.8	4