Masashi Hayakawa

List of Publications by Year in Descending Order

Source: https://exaly.com/author-pdf/1077726/masashi-hayakawa-publications-by-year.pdf

Version: 2024-04-28

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

249
papers

4,989
citations

37
h-index

58
g-index

263
ext. papers

5,717
ext. citations

2.1
avg, IF

L-index

#	Paper	IF	Citations
249	Seismogenic Anomalies in Atmospheric Gravity Waves as Observed from SABER/TIMED Satellite during Large Earthquakes. <i>Journal of Sensors</i> , 2022 , 2022, 1-23	2	2
248	Electromagnetic manifestations of Tonga eruption in Schumann resonance band. <i>Journal of Atmospheric and Solar-Terrestrial Physics</i> , 2022 , 105897	2	5
247	LithosphereAtmosphereIbnosphere Coupling Effects Based on Multiparameter Precursor Observations for FebruaryMarch 2021 Earthquakes (M~7) in the Offshore of Tohoku Area of Japan. <i>Geosciences (Switzerland)</i> , 2021 , 11, 481	2.7	1
246	Estimation of the Epicenter Position of Kamchatka Earthquakes. <i>Pure and Applied Geophysics</i> , 2021 , 178, 813-821	2.2	1
245	Numerical simulation of lower ionospheric reflection parameters by using International Reference Ionosphere (IRI) model and validation with Very Low Frequency (VLF) radio signal characteristics. <i>Advances in Space Research</i> , 2021 , 67, 1599-1611	2.4	3
244	Statistical and Criticality Analysis of the Lower Ionosphere Prior to the 30 October 2020 Samos (Greece) Earthquake (M6.9), Based on VLF Electromagnetic Propagation Data as Recorded by a New VLF/LF Receiver Installed in Athens (Greece). <i>Entropy</i> , 2021 , 23,	2.8	3
243	Evidence of critical dynamics in various electromagnetic precursors. <i>European Physical Journal: Special Topics</i> , 2021 , 230, 151-177	2.3	6
242	Does air ionization by radon cause low-frequency atmospheric electromagnetic earthquake precursors?. <i>Natural Hazards</i> , 2021 , 106, 701-714	3	2
241	Pre-Seismic Irregularities during the 2020 Samos (Greece) Earthquake (M = 6.9) as Investigated from Multi-Parameter Approach by Ground and Space-Based Techniques. <i>Atmosphere</i> , 2021 , 12, 1059	2.7	13
240	Model source bearings of Q-bursts for observations in Antarctica. <i>Journal of Atmospheric and Solar-Terrestrial Physics</i> , 2021 , 222, 105723	2	1
239	Model sub-ionospheric ELF LVLF pulses. <i>Journal of Atmospheric and Solar-Terrestrial Physics</i> , 2021 , 223, 105726	2	1
238	Anomalies of Schumann resonances as observed near Nagoya associated with two huge (M~7) Tohoku offshore earthquakes in 2021. <i>Journal of Atmospheric and Solar-Terrestrial Physics</i> , 2021 , 225, 105761	2	2
237	Unusual Surface Latent Heat Flux Variations and Their Critical Dynamics Revealed before Strong Earthquakes <i>Entropy</i> , 2021 , 24,	2.8	3
236	Progress in the Study of Transient Luminous and Atmospheric Events: A Review. <i>Surveys in Geophysics</i> , 2020 , 41, 1101-1142	7.6	9
235	Natural Time Analysis of Global Navigation Satellite System Surface Deformation: The Case of the 2016 Kumamoto Earthquakes. <i>Entropy</i> , 2020 , 22,	2.8	11
234	Gravity Wave Activity in the Stratosphere before the 2011 Tohoku Earthquake as the Mechanism of Lithosphere-atmosphere-ionosphere Coupling. <i>Entropy</i> , 2020 , 22,	2.8	10
233	A Review on Electrodynamic Influence of Atmospheric Processes to the Ionosphere. <i>Open Journal of Earthquake Research</i> , 2020 , 09, 113-141	0.8	12

(2018-2020)

232	Formation of Ionospheric Precursors of Earthquakes P robable Mechanism and Its Substantiation. <i>Open Journal of Earthquake Research</i> , 2020 , 09, 142-169	0.8	5
231	Contaminated Effect of Geomagnetic Storms on Pre-Seismic Atmospheric and Ionospheric Anomalies during Imphal Earthquake. <i>Open Journal of Earthquake Research</i> , 2020 , 09, 383-402	0.8	6
230	Short-term earthquake prediction in Kamchatka using low-frequency magnetic fields. <i>Natural Hazards</i> , 2020 , 100, 735-755	3	7
229	Modifications of Schumann resonance spectra as an estimate of causative earthquake magnitude: The model treatment. <i>Journal of Atmospheric and Solar-Terrestrial Physics</i> , 2020 , 209, 105392	2	1
228	Scattering of Extremely Low Frequency Electromagnetic Waves by a Localized Seismogenic Ionospheric Perturbation: Observation and Interpretation. <i>Radio Science</i> , 2020 , 55, e2020RS007130	1.4	3
227	Criticality analysis of 3-year-long VLF subionospheric propagation data possibly related to significant earthquake events in Japan. <i>Natural Hazards</i> , 2020 , 102, 47-66	3	2
226	Abnormal Gravity Wave Activity in the Stratosphere Prior to the 2016 Kumamoto Earthquakes. <i>Journal of Geophysical Research: Space Physics</i> , 2019 , 124, 1410-1425	2.6	33
225	On Possible Electromagnetic Precursors to a Significant Earthquake (Mw = 6.3) Occurred in Lesvos (Greece) on 12 June 2017. <i>Entropy</i> , 2019 , 21,	2.8	11
224	Scattering of ELF radio waves by a localized non-uniformity in the lower ionosphere. <i>Journal of Atmospheric and Solar-Terrestrial Physics</i> , 2019 , 194, 105093	2	5
223	Seismogenic effects in ULF/ELF/VLF electromagnetic waves 2019 , 06, 1-86		7
223	Seismogenic effects in ULF/ELF/VLF electromagnetic waves 2019 , 06, 1-86 Interpretation of observations of global electromagnetic resonance by ionosphere non-uniformity localized over the earthquake center. <i>Radiofizika I Elektronika</i> , 2019 , 24, 21-29	0.1	7
	Interpretation of observations of global electromagnetic resonance by ionosphere non-uniformity	0.1	7
222	Interpretation of observations of global electromagnetic resonance by ionosphere non-uniformity localized over the earthquake center. <i>Radiofizika I Elektronika</i> , 2019 , 24, 21-29 SHIFT OF ANTIPODE MAXIMUM OF ELECTRIC FIELD IN THE RESONATOR THE EARTHIDNOSPHERE		
222	Interpretation of observations of global electromagnetic resonance by ionosphere non-uniformity localized over the earthquake center. <i>Radiofizika I Elektronika</i> , 2019 , 24, 21-29 SHIFT OF ANTIPODE MAXIMUM OF ELECTRIC FIELD IN THE RESONATOR THE EARTHIDNOSPHERE CAVITY CAUSED BY DAYNIGHT NON-UNIFORMITY. <i>Radiofizika I Elektronika</i> , 2019 , 24, 33-46 Analysis of the ultra-low frequency magnetic field fluctuations prior to the 2016 Kumamoto (Japan) earthquakes in terms of the method of critical fluctuations. <i>Physica A: Statistical Mechanics and Its</i>	0.1	1
222 221 220	Interpretation of observations of global electromagnetic resonance by ionosphere non-uniformity localized over the earthquake center. <i>Radiofizika I Elektronika</i> , 2019 , 24, 21-29 SHIFT OF ANTIPODE MAXIMUM OF ELECTRIC FIELD IN THE RESONATOR THE EARTHIDNOSPHERE CAVITY CAUSED BY DAYNIGHT NON-UNIFORMITY. <i>Radiofizika I Elektronika</i> , 2019 , 24, 33-46 Analysis of the ultra-low frequency magnetic field fluctuations prior to the 2016 Kumamoto (Japan) earthquakes in terms of the method of critical fluctuations. <i>Physica A: Statistical Mechanics and Its Applications</i> , 2019 , 514, 563-572 Amplitude variations of ELF radio waves in the Earthibnosphere cavity with the daylight	3.3	7
222 221 220 219	Interpretation of observations of global electromagnetic resonance by ionosphere non-uniformity localized over the earthquake center. <i>Radiofizika I Elektronika</i> , 2019 , 24, 21-29 SHIFT OF ANTIPODE MAXIMUM OF ELECTRIC FIELD IN THE RESONATOR THE EARTHIDNOSPHERE CAVITY CAUSED BY DAYNIGHT NON-UNIFORMITY. <i>Radiofizika I Elektronika</i> , 2019 , 24, 33-46 Analysis of the ultra-low frequency magnetic field fluctuations prior to the 2016 Kumamoto (Japan) earthquakes in terms of the method of critical fluctuations. <i>Physica A: Statistical Mechanics and Its Applications</i> , 2019 , 514, 563-572 Amplitude variations of ELF radio waves in the EarthIbnosphere cavity with the daylight non-uniformity. <i>Journal of Atmospheric and Solar-Terrestrial Physics</i> , 2018 , 169, 23-36 Natural time analysis on the ultra-low frequency magnetic field variations prior to the 2016	0.1 3.3 2	1 7 19
222 221 220 219 218	Interpretation of observations of global electromagnetic resonance by ionosphere non-uniformity localized over the earthquake center. <i>Radiofizika I Elektronika</i> , 2019 , 24, 21-29 SHIFT OF ANTIPODE MAXIMUM OF ELECTRIC FIELD IN THE RESONATOR THE EARTHIDNOSPHERE CAVITY CAUSED BY DAYNIGHT NON-UNIFORMITY. <i>Radiofizika I Elektronika</i> , 2019 , 24, 33-46 Analysis of the ultra-low frequency magnetic field fluctuations prior to the 2016 Kumamoto (Japan) earthquakes in terms of the method of critical fluctuations. <i>Physica A: Statistical Mechanics and Its Applications</i> , 2019 , 514, 563-572 Amplitude variations of ELF radio waves in the EarthIbnosphere cavity with the daylight non-uniformity. <i>Journal of Atmospheric and Solar-Terrestrial Physics</i> , 2018 , 169, 23-36 Natural time analysis on the ultra-low frequency magnetic field variations prior to the 2016 Kumamoto (Japan) earthquakes. <i>Journal of Asian Earth Sciences</i> , 2018 , 154, 419-427 Criticality Analysis of the Lower Ionosphere Perturbations Prior to the 2016 Kumamoto (Japan) Earthquakes as Based on VLF Electromagnetic Wave Propagation Data Observed at Multiple	0.1 3.3 2 2.8	1 7 19 18

214	The effect of a compact ionosphere disturbance over the earthquake: A Focus on Schumann resonance 2018 , 5, 11-39		4
213	On the Tempo-Spatial Evolution of the Lower Ionospheric Perturbation for the 2016 Kumamoto Earthquakes from Comparisons of VLF Propagation Data Observed at Multiple Stations with Wave-Hop Theoretical Computations. <i>Open Journal of Earthquake Research</i> , 2018 , 07, 161-185	0.8	5
212	Intermittency-induced criticality in the lower ionosphere prior to the 2016 Kumamoto earthquakes as embedded in the VLF propagation data observed at multiple stations. <i>Tectonophysics</i> , 2018 , 722, 427	2-431	12
211	Impact of the Ionospheric DayNight Non-Uniformity on the ELF Radio-Wave Propagation. <i>Radiophysics and Quantum Electronics</i> , 2018 , 61, 176-191	0.7	5
210	Source Bearing of Extremely Low Frequency (ELF) Waves in the Earth-Ionosphere Cavity With Day-Night Nonuniformity. <i>Journal of Geophysical Research D: Atmospheres</i> , 2018 , 123, 10,895-10,910	4.4	3
209	Modifications of Middle Atmosphere Conductivity During Sudden Ionospheric Disturbances Deduced From Changes of Schumann Resonance Peak Frequencies. <i>Radio Science</i> , 2018 , 53, 670-682	1.4	6
208	Fractal analysis of the ground-recorded ULF magnetic fields prior to the 11 March 2011 Tohoku earthquake (M W = 9): discriminating possible earthquake precursors from space-sourced disturbances. <i>Natural Hazards</i> , 2017 , 85, 59-86	3	15
207	Statistical Evaluations of Variations in Dairy Cows' Milk Yields as a Precursor of Earthquakes. <i>Animals</i> , 2017 , 7,	3.1	3
206	Electromagnetic Precursors to the 2016 Kumamoto Earthquakes. <i>Open Journal of Earthquake Research</i> , 2017 , 06, 168-179	0.8	7
205	Semianalytical models of sprite formation from plasma inhomogeneities. <i>Geomagnetism and Aeronomy</i> , 2016 , 56, 724-732	0.9	2
204	Vertical profile of atmospheric conductivity that matches Schumann resonance observations. <i>SpringerPlus</i> , 2016 , 5, 108		17
203	On the precursors to the 2011 Tohoku earthquake: crustal movements and electromagnetic signatures. <i>Geomatics, Natural Hazards and Risk</i> , 2016 , 7, 471-492	3.6	15
202	On the ionospheric perturbation for the 1995 Kobe earthquake: revisited. <i>Geomatics, Natural Hazards and Risk</i> , 2016 , 7, 278-286	3.6	3
201	Intermittent criticality revealed in ULF magnetic fields prior to the 11 March 2011 Tohoku earthquake (MW=9). <i>Physica A: Statistical Mechanics and Its Applications</i> , 2016 , 452, 19-28	3.3	23
200	ULF/ELF Atmospheric Radiation in Possible Association to the 2011 Tohoku Earthquake as Observed in China. <i>Earth Science Research</i> , 2016 , 5, 47		9
199	Propagation of Extremely Low-Frequency Radio Waves 2016 , 1-20		10
198	Earthquake prediction with electromagnetic phenomena 2016,		10
197	On precursory ULF/ELF electromagnetic signatures for the Kobe earthquake on April 12, 2013. Journal of Asian Earth Sciences, 2015 , 114, 305-311	2.8	8

(2013-2015)

Knee model: Comparison between heuristic and rigorous solutions for the Schumann resonance problem. <i>Journal of Atmospheric and Solar-Terrestrial Physics</i> , 2015 , 135, 85-91	2	9
Very exceptional cases of VLF/LF ionospheric perturbations for deep oceanic earthquakes offshore the Japan island. <i>Journal of Asian Earth Sciences</i> , 2015 , 114, 279-288	2.8	2
Criticality features in ULF magnetic fields prior to the 2011 Tohoku earthquake. <i>Proceedings of the Japan Academy Series B: Physical and Biological Sciences</i> , 2015 , 91, 25-30	4	32
ELF Techniques 2015 , 87-137		
2015,		46
Seismo-meteo-electromagnetic phenomena observed during a 5-year interval around the 2011 Tohoku earthquake. <i>Physics and Chemistry of the Earth</i> , 2015 , 85-86, 167-173	3	10
COMPARISON OF EXACT AND APPROXIMATE SOLUTIONS OF THE SCHUMANN RESONANCE PROBLEM FOR THE KNEE CONDUCTIVITY PROFILE. <i>Telecommunications and Radio Engineering</i> (English Translation of Elektrosvyaz and Radiotekhnika), 2015 , 74, 1377-1390	1.8	8
VERTICAL PROFILE OF ATMOSPHERIC CONDUCTIVITY CORRESPONDING TO SCHUMANN RESONANCE PARAMETERS. <i>Telecommunications and Radio Engineering (English Translation of Elektrosvyaz and Radiotekhnika)</i> , 2015 , 74, 1483-1495	1.8	7
Disturbances of lower ionosphere above the center of earthquake and anomaly in the global electromagnetic resonance signal. Part 2. Anomalies in the power spectra. <i>Radiofizika I Elektronika</i> , 2015 , 20, 31-39	0.1	1
Spectra and waveforms of ELF transients in the Earth-ionosphere cavity with small losses. <i>Radio Science</i> , 2014 , 49, 118-130	1.4	5
The origin of spectral resonance structures of the ionospheric AlfvB resonator. Single high-altitude reflection or resonant cavity excitation?. <i>Journal of Geophysical Research: Space Physics</i> , 2014 , 119, 3117-3129	2.6	9
Tsunami-driven ionospheric perturbations associated with the 2011 Tohoku earthquake as detected by subionospheric VLF signals. <i>Geomatics, Natural Hazards and Risk</i> , 2014 , 5, 285-292	3.6	7
Ultra and Extremely Low Frequency Electromagnetic Fields 2014,		35
Detection of tsunami-driven phase and amplitude perturbations of subionospheric VLF signals following the 2010 Chile earthquake. <i>Journal of Geophysical Research: Space Physics</i> , 2014 , 119, 5012-50)19 ⁶	8
Meteorological effects in the lower ionosphere as based on VLF/LF signal observations. <i>Natural Hazards and Earth System Sciences</i> , 2014 , 14, 2671-2679	3.9	37
Schumann Resonance for Tyros 2014 ,		50
Localized ionospheric disturbance over the earthquake epicentre and modifications of Schumann resonance electromagnetic fields. <i>Geomatics, Natural Hazards and Risk</i> , 2014 , 5, 271-283	3.6	7
Schumann resonance observation in China and anomalous disturbance possibly associated with Tohoku M9.0 earthquake. <i>Earthquake Science</i> , 2013 , 26, 137-145	1.5	10
	problem. Journal of Atmospheric and Solar-Terrestrial Physics, 2015, 135, 85-91 Very exceptional cases of VLF/LF ionospheric perturbations for deep oceanic earthquakes offshore the Japan island. Journal of Asian Earth Sciences, 2015, 114, 279-288 Criticality features in ULF magnetic fields prior to the 2011 Tohoku earthquake. Proceedings of the Japan Academy Series B: Physical and Biological Sciences, 2015, 91, 25-30 ELF Techniques 2015, 87-137 2015, Seismo-meteo-electromagnetic phenomena observed during a 5-year interval around the 2011 Tohoku earthquake. Physics and Chemistry of the Earth, 2015, 85-86, 167-173 COMPARISON OF EXACT AND APPROXIMATE SOLUTIONS OF THE SCHUMANN RESONANCE PROBLEM FOR THE KNEE CONDUCTIVITY PROFILE. Telecommunications and Radio Engineering (English Translation of Elektrosyva and Radiotekhnika), 2015, 74, 1377-1390 VERTICAL PROFILE OF ATMOSPHERIC CONDUCTIVITY CORRESPONDING TO SCHUMANN RESONANCE PARAMETERS. Telecommunications and Radio Engineering (English Translation of Elektrosyva and Radiotekhnika), 2015, 74, 1483-1499 Disturbances of lower ionosphere above the center of earthquake and anomaly in the global electromagnetic resonance signal. Part 2. Anomalies in the power spectra. Radiofizika I Elektronika, 2015, 20, 31-39 Spectra and waveforms of ELF transients in the Earth-ionosphere cavity with small losses. Radio Science, 2014, 49, 118-130 The origin of spectral resonance structures of the ionospheric Alfvh resonator. Single high-altitude reflection or resonant cavity excitation?. Journal of Geophysical Research: Space Physics, 2014, 119, 3117-3129 Tsunami-driven ionospheric perturbations associated with the 2011 Tohoku earthquake as detected by subionospheric perturbations associated with the 2011 Tohoku earthquake as detected by subionospheric perturbations associated with the 2011 Tohoku earthquake as detected by subionospheric perturbations of subionospheric Space Physics, 2014, 119, 5012-50 Meteorological effects in the lower ionosphere as based on VLF/LF signal obs	Problem. Journal of Atmospheric and Solar-Terrestrial Physics, 2015, 135, 85-91 Very exceptional cases of VLF/LF ionospheric perturbations for deep oceanic earthquakes offshore the Japan Island. Journal of Asian Earth Sciences, 2015, 114, 279-288 Criticality features in ULF magnetic fields prior to the 2011 Tohoku earthquake. Proceedings of the Japan Academy Series B: Physical and Biological Sciences, 2015, 91, 25-30 ELF Techniques 2015, 87-137 2015, Seismo-meteo-electromagnetic phenomena observed during a 5-year interval around the 2011 Tohoku earthquake. Physics and Chemistry of the Earth, 2015, 85-86, 167-173 3 COMPARISON OF EXACT AND APPROXIMATE SOLUTIONS OF THE SCHUMANN RESONANCE PROBLEM FOR THE KNEE CONDUCTIVITY PROFILE. Telecommunications and Radio Engineering (English Translation of Elektrosyvaz and Radiotekhnika), 2015, 74, 1377-1390 VERTICAL PROFILE OF ATMOSPHERIC CONDUCTIVITY CORRESPONDING TO SCHUMANN RESONANCE PRARMETERS. Telecommunications and Radio Engineering (English Translation of Elektrosyvaz and Radiotekhnika), 2015, 74, 1483-1495 Disturbances of lower ionosphere above the center of earthquake and anomaly in the global electromagnetic resonance signal. Part 2. Anomalies in the power spectra. Radiofizika i Elektronika, 2015, 20, 31-39 Spectra and waveforms of ELF transients in the Earth-ionosphere cavity with small losses. Radio Science, 2014, 49, 118-130 The origin of spectral resonance structures of the ionospheric AlfvB resonator. Single high-altitude reflection or resonant cavity excitation?. Journal of Geophysical Research: Space Physics, 2014, 119, 3117-3129 Tsunami-driven ionospheric perturbations associated with the 2011 Tohoku earthquake as detected by subionospheric VLF signals. Geomatics, Natural Hazards and Risk, 2014, 5, 285-292 3.6 Ultra and Extremely Low Frequency Electromagnetic Fields 2014, Detection of tsunami-driven phase and amplitude perturbations of Subionospheric VLF signals observations. Natural Hazards and Earth System Sciences, 2014, 14, 2671-2679 Schu

178	The lower ionospheric perturbation as a precursor to the 11 March 2011 Japan earthquake. <i>Geomatics, Natural Hazards and Risk</i> , 2013 , 4, 275-287	3.6	27
177	ULF Magnetic Field Depression as a Possible Precursor to the 2011/3.11 Japan Earthquake. <i>Journal of Atmospheric Electricity</i> , 2013 , 33, 41-51	0.1	11
176	Possible Electromagnetic Effects on Abnormal Animal Behavior Before an Earthquake. <i>Animals</i> , 2013 , 3, 19-32	3.1	9
175	The Ionospheric Precursor to the 2011 March 11 Earthquake Based upon Observations Obtained from the Japan-Pacific Subionospheric VLF/LF Network. <i>Terrestrial, Atmospheric and Oceanic Sciences</i> , 2013 , 24, 393	1.8	19
174	The ULF/ELF electromagnetic radiation before the 11 March 2011 Japanese earthquake. <i>Radio Science</i> , 2013 , 48, 589-596	1.4	29
173	An evidence on the lithosphere-ionosphere coupling in terms of atmospheric gravity waves on the basis of a combined analysis of surface pressure, ionospheric perturbations and ground-based ULF variations. <i>Journal of Atmospheric Electricity</i> , 2013 , 33, 53-68	0.1	12
172	Generation of Seismic-Related DC Electric Fields and Lithosphere-Atmosphere-Ionosphere Coupling. <i>Modern Applied Science</i> , 2013 , 7,	1.3	44
171	A note on the correlation of seismo-ionospheric perturbations with ground motions as deduced from F-net seismic observations. <i>Journal of Atmospheric Electricity</i> , 2013 , 33, 69-76	0.1	4
170	The observation of Doppler shifts of subionospheric LF signal in possible association with earthquakes. <i>Journal of Geophysical Research</i> , 2012 , 117, n/a-n/a		10
169	Tsunami-induced phase and amplitude perturbations of subionospheric VLF signals. <i>Journal of Geophysical Research</i> , 2012 , 117, n/a-n/a		22
168	Underlying mechanisms of transient luminous events: a review. <i>Annales Geophysicae</i> , 2012 , 30, 1185-12	12	23
167	Fractal analysis of ULF electromagnetic emissions in possible association with earthquakes in China. <i>Nonlinear Processes in Geophysics</i> , 2012 , 19, 577-583	2.9	7
166	On the Ultra-Low-Frequency Magnetic Field Depression for Three Huge Oceanic Earthquakes in Japan and in the Kurile Islands. <i>Earth Science Research</i> , 2012 , 2,		3
165	Over-the-Horizon Anomalous VHF Propagation and Earthquake Precursors. <i>Surveys in Geophysics</i> , 2012 , 33, 1081-1106	7.6	10
164	The effect of a gamma ray flare on Schumann resonances. <i>Annales Geophysicae</i> , 2012 , 30, 1321-1329	2	14
163	Anomaly disturbances of the magnetic fields before the strong earthquake in Japan on March 11, 2011. <i>Annals of Geophysics</i> , 2012 , 55,	1.1	5
162	Measurement of Doppler shifts of short-distance subionospheric LF transmitter signals and seismic effects. <i>Journal of Geophysical Research</i> , 2011 , 116, n/a-n/a		8
161	Detection of transient ELF emission caused by the extremely intense cosmic gamma-ray flare of 27 December 2004. <i>Geophysical Research Letters</i> , 2011 , 38, n/a-n/a	4.9	11

160	Universal and local time variations deduced from simultaneous Schumann resonance records at three widely separated observatories. <i>Radio Science</i> , 2011 , 46, n/a-n/a	1.4	9
159	The ultra-low-frequency magnetic disturbances associated with earthquakes. <i>Earthquake Science</i> , 2011 , 24, 523-534	1.5	17
158	Probing the lower ionospheric perturbations associated with earthquakes by means of subionospheric VLF/LF propagation. <i>Earthquake Science</i> , 2011 , 24, 609-637	1.5	33
157	Global Lightning Activity on the Basis of Inversions of Natural ELF Electromagnetic Data Observed at Multiple Stations around the World. <i>Surveys in Geophysics</i> , 2011 , 32, 705-732	7.6	24
156	Impact of a gamma-ray burst on the Schumann resonance. <i>Radiophysics and Quantum Electronics</i> , 2011 , 53, 542-556	0.7	5
155	Seismogenic Effects in the ELF Schumann Resonance Band. <i>IEEJ Transactions on Fundamentals and Materials</i> , 2011 , 131, 684-690	0.2	9
154	Atmospheric gravity waves as a possible candidate for seismo-ionospheric perturbations. <i>Journal of Atmospheric Electricity</i> , 2011 , 31, 129-140	0.1	26
153	A study on global temperature and thunderstorm activity by using the data of Schumann resonance observed at Nakatsugawa, Japan. <i>Journal of Atmospheric Electricity</i> , 2011 , 31, 111-119	0.1	3
152	The ionospheric perturbations associated with Asian earthquakes as seen from the subionospheric propagation from NWC to Japanese stations. <i>Natural Hazards and Earth System Sciences</i> , 2010 , 10, 581	-588	25
151	A statistical study on the correlation between lower ionospheric perturbations as seen by subionospheric VLF/LF propagation and earthquakes. <i>Journal of Geophysical Research</i> , 2010 , 115, n/a-r	n/a	102
151		n/a	102
	subionospheric VLF/LF propagation and earthquakes. <i>Journal of Geophysical Research</i> , 2010 , 115, n/a-r Schumann resonances excitation due to positive and negative cloud-to-ground lightning. <i>Journal of</i>	n/a 1.4	
150	subionospheric VLF/LF propagation and earthquakes. <i>Journal of Geophysical Research</i> , 2010 , 115, n/a-resolution Schumann resonances excitation due to positive and negative cloud-to-ground lightning. <i>Journal of Geophysical Research</i> , 2010 , 115, Reception of ELF transmitter signals at Moshiri, Japan, and their propagation characteristics. <i>Radio</i>		10
150 149	subionospheric VLF/LF propagation and earthquakes. <i>Journal of Geophysical Research</i> , 2010 , 115, n/a-resonances excitation due to positive and negative cloud-to-ground lightning. <i>Journal of Geophysical Research</i> , 2010 , 115, Reception of ELF transmitter signals at Moshiri, Japan, and their propagation characteristics. <i>Radio Science</i> , 2010 , 45, n/a-n/a Spectral Properties of Modulated Signal in the Doppler Domain in Urban Radio Channels With	1.4	10
150 149 148	subionospheric VLF/LF propagation and earthquakes. <i>Journal of Geophysical Research</i> , 2010 , 115, n/a-resonances excitation due to positive and negative cloud-to-ground lightning. <i>Journal of Geophysical Research</i> , 2010 , 115, Reception of ELF transmitter signals at Moshiri, Japan, and their propagation characteristics. <i>Radio Science</i> , 2010 , 45, n/a-n/a Spectral Properties of Modulated Signal in the Doppler Domain in Urban Radio Channels With Fading. <i>IEEE Transactions on Antennas and Propagation</i> , 2010 , 58, 2795-2800 Current status of seismo-electromagnetics for short-term earthquake prediction. <i>Geomatics</i> ,	1.4	10 5 3
150 149 148	Schumann resonances excitation due to positive and negative cloud-to-ground lightning. <i>Journal of Geophysical Research</i> , 2010 , 115, n/a-resonances excitation due to positive and negative cloud-to-ground lightning. <i>Journal of Geophysical Research</i> , 2010 , 115, Reception of ELF transmitter signals at Moshiri, Japan, and their propagation characteristics. <i>Radio Science</i> , 2010 , 45, n/a-n/a Spectral Properties of Modulated Signal in the Doppler Domain in Urban Radio Channels With Fading. <i>IEEE Transactions on Antennas and Propagation</i> , 2010 , 58, 2795-2800 Current status of seismo-electromagnetics for short-term earthquake prediction. <i>Geomatics, Natural Hazards and Risk</i> , 2010 , 1, 115-155 Variations of the global lightning distribution revealed from three-station Schumann resonance	1.4	10 5 3 79
150 149 148 147	Schumann resonances excitation due to positive and negative cloud-to-ground lightning. <i>Journal of Geophysical Research</i> , 2010 , 115, n/a-r. Reception of ELF transmitter signals at Moshiri, Japan, and their propagation characteristics. <i>Radio Science</i> , 2010 , 45, n/a-n/a Spectral Properties of Modulated Signal in the Doppler Domain in Urban Radio Channels With Fading. <i>IEEE Transactions on Antennas and Propagation</i> , 2010 , 58, 2795-2800 Current status of seismo-electromagnetics for short-term earthquake prediction. <i>Geomatics, Natural Hazards and Risk</i> , 2010 , 1, 115-155 Variations of the global lightning distribution revealed from three-station Schumann resonance measurements. <i>Journal of Geophysical Research</i> , 2010 , 115, n/a-n/a	1.4 4.9 3.6	10 5 3 79 24

142	Q-Bursts: Natural ELF Radio Transients. Surveys in Geophysics, 2010, 31, 409-425	7.6	18
141	Subionospheric VLF/LF Probing of Ionospheric Perturbations Associated with Earthquakes: A Possibility of Earthquake Prediction. <i>SICE Journal of Control Measurement and System Integration</i> , 2010 , 3, 10-14	0.3	15
140	Comparison of time delays of sprites induced by winter lightning flashes in the Japan Sea with those in the Pacific Ocean. <i>Journal of Atmospheric and Solar-Terrestrial Physics</i> , 2009 , 71, 101-111	2	14
139	A study of the morphology of winter sprites in the Hokuriku area of Japan in relation to cloud charge height. <i>Journal of Atmospheric and Solar-Terrestrial Physics</i> , 2009 , 71, 597-602	2	6
138	Three-dimensional EM computer simulation on sprite initiation above a horizontal lightning discharge. <i>Journal of Atmospheric and Solar-Terrestrial Physics</i> , 2009 , 71, 983-990	2	15
137	Anomalous excitation of Schumann resonances and additional anomalous resonances before the 2004 Mid-Niigata prefecture earthquake and the 2007 Noto Hantou Earthquake. <i>Physics and Chemistry of the Earth</i> , 2009 , 34, 441-448	3	21
136	AGW as a seismo-ionospheric coupling responsible agent. <i>Physics and Chemistry of the Earth</i> , 2009 , 34, 485-495	3	46
135	The Design of Radio Maps in Tokyo City Based on Stochastic Multi-Parametric and Deterministic Ray-Tracing Approaches [Wireless Corner]. <i>IEEE Antennas and Propagation Magazine</i> , 2009 , 51, 200-208	1.7	9
134	Interferometric direction finding of over-horizon VHF transmitter signals and natural VHF radio emissions possibly associated with earthquakes. <i>Radio Science</i> , 2009 , 44, n/a-n/a	1.4	10
133	Computer simulations on sprite initiation for realistic lightning models with higher-frequency surges. <i>Journal of Geophysical Research</i> , 2009 , 114, n/a-n/a		29
132	Further study on the role of atmospheric gravity waves on the seismo-ionospheric perturbations as detected by subionospheric VLF/LF propagation. <i>Natural Hazards and Earth System Sciences</i> , 2009 , 9, 1111-1118	3.9	29
131	A Review on Direction Finding of VLF/ELF Sferics. <i>Journal of Atmospheric Electricity</i> , 2009 , 29, 35-52	0.1	4
130	Fractal ULF signatures related to seismic processes. <i>Journal of Atmospheric Electricity</i> , 2009 , 29, 81-93	0.1	3
129	Morphology of winter sprites in the Hokuriku area of Japan: Monthly variation and dependence on air temperature. <i>Journal of Atmospheric Electricity</i> , 2009 , 29, 23-34	0.1	
128	Global distribution and characteristics of intense lightning discharges as deduced from ELF transients observed at Moshiri (Japan). <i>Journal of Atmospheric Electricity</i> , 2009 , 29, 71-80	0.1	2
127	Computer simulations on the initiation and morphological difference of Japan winter and summer sprites. <i>Journal of Geophysical Research</i> , 2008 , 113, n/a-n/a		25
126	Comment on Bprite lightning heard round the world by Schumann resonance methods[by E. R. Williams, V. C. Mushtak, R. Boldi, R. L. Dowden, and ZI. Kawasaki. <i>Radio Science</i> , 2008 , 43, n/a-n/a	1.4	1
125	Signal power distribution in time delay in Tokyo City experimental sites. <i>Radio Science</i> , 2008 , 43, n/a-n/a	1.4	3

124	On the generation of narrow-banded ULF/ELF pulsations in the lower ionospheric conducting layer. <i>Journal of Geophysical Research</i> , 2008 , 113, n/a-n/a		11
123	Ionospheric disturbances caused by SGR 1900+14 giant gamma ray flare in 1998: Constraints on the energy spectrum of the flare. <i>Journal of Geophysical Research</i> , 2008 , 113, n/a-n/a		28
122	Natural electromagnetic ULF noise due to fluctuations of ionospheric currents. <i>Journal of Geophysical Research</i> , 2008 , 113, n/a-n/a		3
121	Q-bursts: A comparison of experimental and computed ELF waveforms. <i>Radio Science</i> , 2008 , 43, n/a-n/a	1.4	7
120	On the statistical correlation between the ionospheric perturbations as detected by subionospheric VLF/LF propagation anomalies and earthquakes. <i>Natural Hazards and Earth System Sciences</i> , 2008 , 8, 653-656	3.9	29
119	About possibility to locate an EQ epicenter using parameters of ELF/ULF preseismic emission. <i>Natural Hazards and Earth System Sciences</i> , 2008 , 8, 1237-1242	3.9	19
118	Recent Developments in Portable Weather Radars and New Experiments. <i>IEEJ Transactions on Fundamentals and Materials</i> , 2008 , 128, 2-4	0.2	
117	Anomalous ELF phenomena in the Schumann resonance band as observed at Moshiri (Japan) in possible association with an earthquake in Taiwan. <i>Natural Hazards and Earth System Sciences</i> , 2008 , 8, 1309-1316	3.9	30
116	Universal and local time components in Schumann resonance intensity. <i>Annales Geophysicae</i> , 2008 , 26, 813-822	2	1
115	Anomalous Excitation of Schumann Resonances associated with Earthquakes. <i>Journal of Atmospheric Electricity</i> , 2008 , 28, 87-99	0.1	1
114	The Solutions of LCD Panel (T-Con) EMI Noise for Wireless Integration 2007,		7
113	ULF/ELF magnetic field variations from atmosphere induced by seismicity. <i>Radio Science</i> , 2007 , 42,	1.4	39
112	Solar flare induced D region perturbation in the ionosphere, as revealed from a short-distance VLF propagation path. <i>Geophysical Research Letters</i> , 2007 , 34,	4.9	21
111	ULF electromagnetic noise due to random variations of background atmospheric current and conductivity. <i>Journal of Geophysical Research</i> , 2007 , 112,		6
110	Use of generalized cross validation for identification of global lightning distribution by using Schumann resonances. <i>Radio Science</i> , 2007 , 42, n/a-n/a	1.4	10
109	VLF/LF Radio Sounding of Ionospheric Perturbations Associated with Earthquakes. <i>Sensors</i> , 2007 , 7, 114	1 ;-815	8 105
108	Application of different signal analysis methods to the ULF data for the 1993 Guam earthquake. <i>Natural Hazards and Earth System Sciences</i> , 2007 , 7, 479-484	3.9	9
107	Characteristics of Japanese winter sprites and their parent lightning as estimated by VHF lightning and ELF transients. <i>Journal of Atmospheric and Solar-Terrestrial Physics</i> , 2007 , 69, 1431-1446	2	24

106	Fractal characteristics of the ground-observed ULF emissions in relation to geomagnetic and seismic activities. <i>Journal of Atmospheric and Solar-Terrestrial Physics</i> , 2007 , 69, 1833-1841	2	20
105	Cellular automaton modeling of mesospheric optical emissions: Sprites. <i>Physics of Plasmas</i> , 2007 , 14, 042902	2.1	11
104	Monitoring of ULF (Ultra-Low-Frequency) Geomagnetic Variations Associated with Earthquakes. <i>Sensors</i> , 2007 , 7, 1108-1122	3.8	99
103	Recent Progress and State of the Art of Seismo-Electromagnetics. <i>IEEJ Transactions on Fundamentals and Materials</i> , 2007 , 127, 4-6	0.2	2
102	Diurnal variations in Schumann resonance intensity in the local and universal times. <i>Journal of Atmospheric Electricity</i> , 2007 , 27, 83-93	0.1	1
101	Fractal analysis of radar images of Japanese winter thunderclouds inducing sprites and its comparison with their corresponding life cycle. <i>Journal of Atmospheric Electricity</i> , 2007 , 27, 113-121	0.1	2
100	Formation mechanism of the lower-ionospheric disturbances by the atmosphere electric current over a seismic region. <i>Journal of Atmospheric and Solar-Terrestrial Physics</i> , 2006 , 68, 1260-1268	2	44
99	Deembedding and unterminating microwave fixtures with the genetic algorithm. <i>IEEE Transactions on Microwave Theory and Techniques</i> , 2006 , 54, 3131-3140	4.1	12
98	Identification of electric circuits described by ill-conditioned mathematical models. <i>IEEE Transactions on Circuits and Systems Part 1: Regular Papers</i> , 2006 , 53, 78-91		14
97	Variations in global thunderstorm activity inferred from the OTD records. <i>Geophysical Research Letters</i> , 2006 , 33,	4.9	13
96	How do winter thundercloud systems generate sprite-inducing lightning in the Hokuriku area of Japan?. <i>Geophysical Research Letters</i> , 2006 , 33, n/a-n/a	4.9	23
95	Determination of hearth position of a forthcoming strong EQ using gradients and phase velocities of ULF geomagnetic disturbances. <i>Physics and Chemistry of the Earth</i> , 2006 , 31, 292-298	3	11
94	Survey of anomalous Schumann resonance phenomena observed in Japan, in possible association with earthquakes in Taiwan. <i>Physics and Chemistry of the Earth</i> , 2006 , 31, 397-402	3	30
93	Singular spectral analysis and principal component analysis for signal discrimination of ULF geomagnetic data associated with 2000 Izu Island Earthquake Swarm. <i>Physics and Chemistry of the Earth</i> , 2006 , 31, 281-291	3	46
92	Seismo-ionospheric depression of the ULF geomagnetic fluctuations at Kamchatka and Japan. <i>Physics and Chemistry of the Earth</i> , 2006 , 31, 313-318	3	36
91	Model modifications in Schumann resonance intensity caused by a localized ionosphere disturbance over the earthquake epicenter. <i>Annales Geophysicae</i> , 2006 , 24, 567-575	2	24
90	Fractal analysis for the ULF data during the 1993 Guam earthquake to study prefracture criticality. <i>Nonlinear Processes in Geophysics</i> , 2006 , 13, 409-412	2.9	36
89	Evidence on a link between the intensity of Schumann resonance and global surface temperature. <i>Annales Geophysicae</i> , 2006 , 24, 1809-1817	2	44

(2005-2006)

88	The Importance of Direction Finding Technique for the Study of VLF/ELF Sferics and Whistlers. <i>IEEJ Transactions on Fundamentals and Materials</i> , 2006 , 126, 65-70	0.2	9	
87	Recent Progress in Seismo Electromagnetics (Electromagnetic Phenomena Associated with Earthquakes). <i>IEEJ Transactions on Fundamentals and Materials</i> , 2006 , 126, 43-44	0.2	1	
86	Observation of ULF Geomagnetic Variations and Detection of ULF Emissions Associated with Earthquakes: Review. <i>IEEJ Transactions on Fundamentals and Materials</i> , 2006 , 126, 1238-1244	0.2	1	
85	Electromagnetic Phenomena Associated with Earthquakes. <i>IEEJ Transactions on Fundamentals and Materials</i> , 2006 , 126, 211-214	0.2	8	
84	Multifractal Analysis for the ULF Geomagnetic Data during the Guam Earthquake. <i>IEEJ Transactions on Fundamentals and Materials</i> , 2006 , 126, 215-219	0.2	3	
83	A statistical study on the effect of earthquakes on the ionosphere, based on the subionospheric LF propagation data in Japan. <i>Annales Geophysicae</i> , 2006 , 24, 2219-2225	2	61	
82	Characteristics of the Sprite Parent Winter Thundercloud with Positive Single Flash in Hokuriku, Japan (A Case Study on 14th December 2001). <i>IEEJ Transactions on Fundamentals and Materials</i> , 2006 , 126, 78-83	0.2	1	
81	Precursory Phenomena of Off Kii Peninsula, Niigataken-Chuetsu, and Sumatra-Andaman Earthquake observed at Nakatsugawa. <i>Journal of Atmospheric Electricity</i> , 2006 , 26, 11-24	0.1		
80	Multi-fractal analysis for thunderstorms leading to the generation of sprites and elves. <i>Journal of Atmospheric Electricity</i> , 2006 , 26, 51-57	0.1	1	
79	LOCATION AND ELECTRICAL PROPERTIES OF SPRITE-PRODUCING LIGHTNING FROM A SINGLE ELF SITE 2006 , 211-235		31	
78	Does Schumann resonance affect our blood pressure?. <i>Biomedicine and Pharmacotherapy</i> , 2005 , 59 Suppl 1, S10-4	7.5	27	
77	On the fine structure of thunderstorms leading to the generation of sprites and elves: Fractal analysis. <i>Journal of Geophysical Research</i> , 2005 , 110, n/a-n/a		16	
76	Finite difference analyses of Schumann resonance and reconstruction of lightning distribution. <i>Radio Science</i> , 2005 , 40, n/a-n/a	1.4	27	
75	Investigation of ULF magnetic anomaly during Izu earthquake swarm and Miyakejima volcano eruption at summer 2000, Japan. <i>Natural Hazards and Earth System Sciences</i> , 2005 , 5, 63-69	3.9	9	
74	Principal component analysis and singular spectrum analysis of ULF geomagnetic data associated with earthquakes. <i>Natural Hazards and Earth System Sciences</i> , 2005 , 5, 685-689	3.9	37	
73	Near-seismic effects in ULF fields and seismo-acoustic emission: statistics and explanation. <i>Natural Hazards and Earth System Sciences</i> , 2005 , 5, 1-10	3.9	23	
72	Multifractal analysis for the ULF geomagnetic data during the 1993 Guam earthquake. <i>Nonlinear Processes in Geophysics</i> , 2005 , 12, 157-162	2.9	49	
71	Anomalous effect in Schumann resonance phenomena observed in Japan, possibly associated with the Chi-chi earthquake in Taiwan. <i>Annales Geophysicae</i> , 2005 , 23, 1335-1346	2	54	

70	A General Modeling Method of Synthesis of Complex Technical and Biological Systems. <i>IEEJ Transactions on Fundamentals and Materials</i> , 2005 , 125, 577-582	0.2	2
69	Analysis on Subaerial Electric Field Radiated by a Unit Electric Current Source in the Ground. <i>IEEJ Transactions on Fundamentals and Materials</i> , 2005 , 125, 591-595	0.2	3
68	New ELF Observation System at Moshiri, Japan and Assessments of Acquired Data. <i>Journal of Atmospheric Electricity</i> , 2005 , 25, 29-39	0.1	16
67	Enhancement of EMI Immunity of Cables using Periodical and Quasi-periodical Structures Optimized by the Genetic Algorithm. <i>IEEJ Transactions on Fundamentals and Materials</i> , 2005 , 125, 350-	358 ²	
66	Observation of Precursory Phenomena on Earthquake using ELF Electromagnetic Waves. <i>Journal of Atmospheric Electricity</i> , 2005 , 25, 11-18	0.1	
65	3D Modelling Method of VLF Subionospheric Radio Wave Propagation Allowing for a Localized Ionospheric Perturbation. <i>IEEJ Transactions on Fundamentals and Materials</i> , 2004 , 124, 1216-1224	0.2	1
64	FDTD Analysis of ELF Wave Propagation for Realistic Subionospheric Waveguide Models. <i>IEEJ Transactions on Fundamentals and Materials</i> , 2004 , 124, 1203-1209	0.2	5
63	Lithosphere-atmosphere-ionosphere coupling as governing mechanism for preseismic short-term events in atmosphere and ionosphere. <i>Natural Hazards and Earth System Sciences</i> , 2004 , 4, 757-767	3.9	88
62	Time domain presentation for ELF pulses with accelerated convergence. <i>Geophysical Research Letters</i> , 2004 , 31, n/a-n/a	4.9	8
61	Characteristic of subionospheric VLF perturbations associated with winter lightning around Japan. <i>Geophysical Research Letters</i> , 2004 , 31,	4.9	6
60	Observation of sprites over the Sea of Japan and conditions for lightning-induced sprites in winter. Journal of Geophysical Research, 2004 , 109,		60
59	Relation between the energy of earthquake swarm and the Hurst exponent of random variations of the geomagnetic field. <i>Physics and Chemistry of the Earth</i> , 2004 , 29, 379-387	3	11
58	Middle latitude LF (40 kHz) phase variations associated with earthquakes for quiet and disturbed geomagnetic conditions. <i>Physics and Chemistry of the Earth</i> , 2004 , 29, 589-598	3	105
57	Summary report of NASDA's earthquake remote sensing frontier project. <i>Physics and Chemistry of the Earth</i> , 2004 , 29, 617-625	3	57
56	Fractal analysis of seismogenic ULF emissions. <i>Physics and Chemistry of the Earth</i> , 2004 , 29, 419-424	3	51
55	ULF geomagnetic anomaly associated with 2000 Izu Islands earthquake swarm, Japan. <i>Physics and Chemistry of the Earth</i> , 2004 , 29, 425-435	3	50
54	Precursory behavior of fractal characteristics of the ULF electromagnetic fields in seismic active zones before strong earthquakes. <i>Physics and Chemistry of the Earth</i> , 2004 , 29, 445-451	3	46
53	Numerical Aspects in the Calculation of the Transient Lightning Electromagnetic Radiation Over Lossy Ground. <i>IEEJ Transactions on Fundamentals and Materials</i> , 2004 , 124, 67-71	0.2	3

52	Ultra-Low-Frequency Electromagnetic Emissions Associated with Earthquakes. <i>IEEJ Transactions on Fundamentals and Materials</i> , 2004 , 124, 1101-1108	0.2	14
51	Is Earthquake Prediction Possible by Means of Electromagnetic Phenomena?. <i>IEEJ Transactions on Fundamentals and Materials</i> , 2004 , 124, 3-4	0.2	2
50	ALTERNATIVE INTERPRETATION OF IONOSPHERIC ALFVEN RESONANCE. <i>Journal of Atmospheric Electricity</i> , 2004 , 24, 17-30	0.1	
49	Improvement in Detection of Earthquake Precursors by Means of Terminator Time Method in Subionospheric VLF Propagation. <i>Journal of Atmospheric Electricity</i> , 2004 , 24, 31-38	0.1	
48	Fractal analysis of the ULF geomagnetic data obtained at Izu Peninsula, Japan in relation to the nearby earthquake swarm of June August 2000. <i>Natural Hazards and Earth System Sciences</i> , 2003 , 3, 229-236	3.9	30
47	Pre-earthquake ULF electromagnetic perturbations as a result of inductive seismomagnetic phenomena during microfracturing. <i>Journal of Atmospheric and Solar-Terrestrial Physics</i> , 2003 , 65, 31-46	2	28
46	An analysis of excitation of magnetostatic surface waves in an in-plane magnetized YIG film by the integral kernel expansion method. <i>IEEE Transactions on Microwave Theory and Techniques</i> , 2003 , 51, 492	- 49 9	4
45	Phase-bunching effects in triggered VLF emissions: Antenna effect. <i>Journal of Geophysical Research</i> , 2003 , 108,		13
44	On the lithosphere-atmosphere coupling of seismo-electromagnetic signals. <i>Radio Science</i> , 2003 , 38, n/a-n/a	1.4	13
43	Use of wavelet analysis for detection of seismogenic ULF emissions. <i>Radio Science</i> , 2003 , 38, n/a-n/a	1.4	8
42	FDTD analysis of ELF wave propagation and Schumann resonances for a subionospheric waveguide model. <i>Radio Science</i> , 2003 , 38, n/a-n/a	1.4	24
41	Electromagnetic Effects Associated with Regional Sefomic Activity in Crimea during the Interval July-August 2002. <i>Journal of Atmospheric Electricity</i> , 2003 , 23, 57-67	0.1	1
40	Technology 2003: Review & Forecast <i>IEEJ Transactions on Fundamentals and Materials</i> , 2003 , 123, 1-11	0.2	1
39	Theoretical analysis on the penetration of power line harmonic radiation into the ionosphere. <i>Radio Science</i> , 2002 , 37, 5-1-5-12	1.4	12
38	Three-dimensional subionospheric VLF field diffraction by a truncated highly conducting cylinder and its application to the Trimpi effect problem. <i>Radio Science</i> , 2002 , 37, 12-1-12-15	1.4	5
37	Electromagnetic anomalies associated with 1995 Kobe earthquake. <i>Journal of Geodynamics</i> , 2002 , 33, 401-411	2.2	100
36	Fractal properties of medium and seismoelectric phenomena. <i>Journal of Geodynamics</i> , 2002 , 33, 477-48	72.2	41
35	Thermal IR satellite data application for earthquake research in Japan and China. <i>Journal of Geodynamics</i> , 2002 , 33, 519-534	2.2	201

34	Principal component analysis of ULF geomagnetic data for Izu islands earthquakes in July 2000. Journal of Atmospheric Electricity, 2002 , 22, 1-12	0.1	20
33	A study on the radiation loss from a bent transmission line. <i>IEEE Transactions on Electromagnetic Compatibility</i> , 2001 , 43, 618-621	2	22
32	Interrelation between ELF transients and ionospheric disturbances in association with sprites and elves. <i>Geophysical Research Letters</i> , 2001 , 28, 935-938	4.9	70
31	ULF/ELF emissions observed in Japan, possibly associated with the Chi-Chi earthquake in Taiwan. <i>Natural Hazards and Earth System Sciences</i> , 2001 , 1, 37-42	3.9	42
30	Scaling characteristics of ULF geomagnetic fields at the Guam seismoactive area and their dynamics in relation to the earthquake. <i>Natural Hazards and Earth System Sciences</i> , 2001 , 1, 119-126	3.9	39
29	Seismic effect on the propagation of subionospheric LF radio waves in Italy. <i>Journal of Atmospheric Electricity</i> , 2001 , 21, 1-7	0.1	
28	Acousto-Optic Solitons in Fibers. <i>Optical Review</i> , 2000 , 7, 323-325	0.9	6
27	Cyclotron amplification of whistler waves by nonstationary electron beams in an inhomogeneous magnetic field. <i>Physics of Plasmas</i> , 2000 , 7, 5153-5158	2.1	7
26	New ELF Observation Site in Moshiri, Hokkaido Japan and the Results of Preliminary Data Analysis. Journal of Atmospheric Electricity, 2000 , 20, 99-109	0.1	13
25	Wide-band ULF/ELF magnetic field measurement in Seikoshi, Izu Japan and some results from preliminary data analysis in relation with seismic activity. <i>Journal of Atmospheric Electricity</i> , 2000 , 20, 111-121	0.1	
24	Beam-plasma instability in inhomogeneous magnetic field and second order cyclotron resonance effects. <i>Physics of Plasmas</i> , 1999 , 6, 692-698	2.1	18
23	ELF sub-ionospheric pulse in time domain. <i>Geophysical Research Letters</i> , 1999 , 26, 999-1002	4.9	15
22	Fractal analysis of ULF geomagnetic data associated with the Guam Earthquake on August 8, 1993. <i>Geophysical Research Letters</i> , 1999 , 26, 2797-2800	4.9	108
21	ANOMALOUS SUBSURFACE VLF ELECTRIC FIELD CHANGES ASSOCIATED WITH EARTHQUAKES AND NUCLEAR EXPLOSIONS OBSERVED AT AGRA. <i>Journal of Atmospheric Electricity</i> , 1999 , 19, 119-134	0.1	3
20	AN AUTOMATIC DETECTING METHOD OF TRIL¥IPI EVENTS BASED ON MATCHED FILTER CONCEPT. Journal of Atmospheric Electricity, 1999 , 19, 61-68	0.1	
19	On the generation mechanism of ULF seismogenic electromagnetic emissions. <i>Physics of the Earth and Planetary Interiors</i> , 1998 , 105, 201-210	2.3	85
18	Ultra-low-frequency magnetic fields during the Guam earthquake of 8 August 1993 and their interpretation. <i>Physics of the Earth and Planetary Interiors</i> , 1998 , 105, 229-238	2.3	49
17	Precursory effects in the subionospheric VLF signals for the Kobe earthquake. <i>Physics of the Earth and Planetary Interiors</i> , 1998 , 105, 239-248	2.3	97

LIST OF PUBLICATIONS

16	The modelling of VLF Trimpis using both finite element and 3D Born Modelling. <i>Geophysical Research Letters</i> , 1998 , 25, 4453-4456	4.9	14
15	Natural electromagnetic pulses in the ELF range. <i>Geophysical Research Letters</i> , 1998 , 25, 3103-3106	4.9	12
14	Subionospheric VLF signal perturbations possibly related to earthquakes. <i>Journal of Geophysical Research</i> , 1998 , 103, 17489-17504		175
13	Ducted and Nonducted Whistlers at Mid Latitude. <i>Journal of Atmospheric Electricity</i> , 1998 , 18, 131-138	0.1	
12	A new type of mid-latitude multi-path whistler trains including a non-ducted whistler. <i>Geophysical Research Letters</i> , 1997 , 24, 2937-2940	4.9	3
11	DUCTED PROPAGATION OF LIGHTNING-GENERATED WHISTLERS IN THE JOVIAN MAGNETOSPHERE. <i>Journal of Atmospheric Electricity</i> , 1997 , 17, 33-45	0.1	
10	Results of ultra-low-frequency magnetic field measurements during the Guam Earthquake of 8 August 1993. <i>Geophysical Research Letters</i> , 1996 , 23, 241-244	4.9	202
9	Characteristics of mid-latitude whistler ducts as deduced from ground-based measurements. <i>Geophysical Research Letters</i> , 1996 , 23, 3301-3304	4.9	7
8	PROPAGATION OF TRANSIENT ELECTROMAGNETIC WAVES IN A LOSSY MAGNETOPLASMA HALF-SPACE WITH ARBITRARILY-ORIENTED MAGNETIC FIELD. <i>Journal of Atmospheric Electricity</i> , 1996 , 16, 89-101	0.1	
7	Generation of ULF electromagnetic emissions by microfracturing. <i>Geophysical Research Letters</i> , 1995 , 22, 3091-3094	4.9	133
6	Heating of the lower ionosphere electrons by electromagnetic radiation of lightning discharges. <i>Geophysical Research Letters</i> , 1995 , 22, 3015-3018	4.9	23
5	The effect of subionospheric propagation on whistlers as deduced from direction finding measurements. <i>Geophysical Research Letters</i> , 1994 , 21, 89-92	4.9	4
4	Transmission characteristics of VLF/ELF radio waves through the Jovian ionosphere. <i>Geophysical Research Letters</i> , 1993 , 20, 2435-2438	4.9	3
3	De-embedding microwave fixtures with the genetic algorithm		2
2	Identification of electric circuits: problems and methods of solution accuracy enhancement		6
1	Direct and indirect evidence of pre-seismic electromagnetic emissions associated with two large earthquakes in Japan. <i>Natural Hazards</i> ,1	3	1