Neta Regev-Rudzki

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1077714/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Cell-Cell Communication between Malaria-Infected Red Blood Cells via Exosome-like Vesicles. Cell, 2013, 153, 1120-1133.	13.5	508
2	Malaria parasite DNA-harbouring vesicles activate cytosolic immune sensors. Nature Communications, 2017, 8, 1985.	5.8	160
3	Extracellular Vesicles From Epicardial Fat Facilitate Atrial Fibrillation. Circulation, 2021, 143, 2475-2493.	1.6	99
4	Herpesviruses shape tumour microenvironment through exosomal transfer of viral microRNAs. PLoS Pathogens, 2017, 13, e1006524.	2.1	73
5	Extracellular vesicles in parasite survival. Science, 2019, 363, 817-818.	6.0	63
6	Schistosomal extracellular vesicleâ€enclosed miRNAs modulate host T helper cell differentiation. EMBO Reports, 2020, 21, e47882.	2.0	60
7	Schistosomal miRNAs isolated from Extracellular Vesicles in sera of infected patients; a new tool for diagnosis and follow-up of human schistosomiasis. Journal of Infectious Diseases, 2017, 215, jiw539.	1.9	51
8	Extracellular vesicles from early stage <i>Plasmodium falciparum</i> -infected red blood cells contain PfEMP1 and induce transcriptional changes in human monocytes. Cellular Microbiology, 2018, 20, e12822.	1.1	51
9	Monitoring Extracellular Vesicle Cargo Active Uptake by Imaging Flow Cytometry. Frontiers in Immunology, 2018, 9, 1011.	2.2	47
10	20S proteasomes secreted by the malaria parasite promote its growth. Nature Communications, 2021, 12, 1172.	5.8	45
11	Histamine releasing factor and elongation factor 1 alpha secreted via malaria parasites extracellular vesicles promote immune evasion by inhibiting specific T cell responses. Cellular Microbiology, 2019, 21, e13021.	1.1	35
12	Pathogen-derived extracellular vesicles coordinate social behaviour and host manipulation. Seminars in Cell and Developmental Biology, 2017, 67, 83-90.	2.3	33
13	Identification and classification of the malaria parasite blood developmental stages, using imaging flow cytometry. Methods, 2017, 112, 157-166.	1.9	30
14	Probing cellular mechanics with acoustic force spectroscopy. Molecular Biology of the Cell, 2018, 29, 2005-2011.	0.9	27
15	Malaria parasites both repress host CXCL10 and use it as a cue for growth acceleration. Nature Communications, 2021, 12, 4851.	5.8	22
16	The role of convolutional neural networks in scanning probe microscopy: a review. Beilstein Journal of Nanotechnology, 2021, 12, 878-901.	1.5	18
17	Extracellular Vesicles: A Prevalent Tool for Microbial Gene Delivery?. Proteomics, 2019, 19, e1800170.	1.3	7
18	Cell communication and protein degradation: All in one parasitic package. Journal of Extracellular Vesicles, 2021, 10, e12116.	5.5	6

Neta Regev-Rudzki

#	Article	IF	CITATIONS
19	Sialylated <i>N</i> â€glycans mediate monocyte uptake of extracellular vesicles secreted from <i>Plasmodium falciparum</i> â€infected red blood cells. , 2022, 1, .		6
20	Tuberculosis's cargoman: bacteria load <scp>RNA</scp> into host extracellular vesicles. EMBO Reports, 2019, 20, .	2.0	3
21	Antibody-Free Labeling of Malaria-Derived Extracellular Vesicles Using Flow Cytometry. Biomedicines, 2020, 8, 98.	1.4	3
22	Monitoring Distribution Dynamics of EV RNA Cargo Within Recipient Monocytes and Macrophages. Frontiers in Cellular and Infection Microbiology, 2021, 11, 739628.	1.8	3
23	The Evolution and Function of Co-Chaperones in Mitochondria. Sub-Cellular Biochemistry, 2015, 78, 201-217.	1.0	2