Teruyuki Nakato

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1077699/publications.pdf

Version: 2024-02-01

68 papers

2,218 citations

304368 22 h-index 223531 46 g-index

70 all docs 70 docs citations

70 times ranked 3270 citing authors

#	Article	IF	CITATIONS
1	A Review of Flax Fiber Reinforced Thermoset Polymer Composites: Structure and Mechanical Performance. Journal of Natural Fibers, 2022, 19, 9656-9680.	1.7	9
2	Impacts of negatively charged colloidal clay particles on photoisomerization of both anionic and cationic azobenzene molecules. RSC Advances, 2022, 12, 10855-10861.	1.7	3
3	Formation of a Giant Anisotropically Ordered Assembled Structure of Inorganic Nanosheets through an Optically Induced Stream. Langmuir, 2022, 38, 6647-6652.	1.6	O
4	Electrically Induced Alignment of Semiconductor Nanosheets in Niobate–Clay Binary Nanosheet Colloids toward Significantly Enhanced Photocatalysis. Langmuir, 2021, 37, 7789-7800.	1.6	6
5	The effects of graphene hybridization on mechanical properties of GFRP composites. AIP Conference Proceedings, 2021, , .	0.3	2
6	Universal Access to Twoâ€Dimensional Mesoporous Heterostructures by Micelleâ€Directed Interfacial Assembly. Angewandte Chemie, 2020, 132, 19738-19743.	1.6	18
7	Universal Access to Twoâ€Dimensional Mesoporous Heterostructures by Micelleâ€Directed Interfacial Assembly. Angewandte Chemie - International Edition, 2020, 59, 19570-19575.	7.2	52
8	Development of Structural Color by Niobate Nanosheet Colloids. Chemistry Letters, 2020, 49, 717-720.	0.7	11
9	Optical manipulation of a single clay nanosheet hybridized with a porphyrin derivative. OSA Continuum, 2020, 3, 1545.	1.8	1
10	Mesoscopic Architectures Made of Electrically Charged Binary Colloidal Nanosheets in Aqueous System. Langmuir, 2019, 35, 14543-14552.	1.6	8
11	Electric-Alignment Immobilization of Liquid Crystalline Colloidal Nanosheets with the Aid of a Natural Organic Polymer. Langmuir, 2019, 35, 7003-7008.	1.6	1
12	Microscope Observation of Morphology of Colloidally Dispersed Niobate Nanosheets Combined with Optical Trapping. Langmuir, 2019, 35, 5568-5573.	1.6	5
13	Photoinduced electron transfer in semiconductor–clay binary nanosheet colloids controlled by clay particles as a turnout switch. Applied Catalysis B: Environmental, 2019, 241, 499-505.	10.8	10
14	Radiation Pressure Induced Hierarchical Structure of Liquid Crystalline Inorganic Nanosheets. ACS Photonics, 2018, 5, 1288-1293.	3.2	14
15	Optical Trapping and Orientation Manipulation of 2D Inorganic Materials Using a Linearly Polarized Laser Beam. Clays and Clay Minerals, 2018, 66, 138-145.	0.6	6
16	Electrolyte-dependence of the macroscopic textures generated in the colloidal liquid crystals of niobate nanosheets. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2018, 556, 106-112.	2.3	2
17	Optical control of orientation of nanosheet in colloidal state. , 2018, , .		O
18	Textural diversity of hierarchical macroscopic structures of colloidal liquid crystalline nanosheets organized under electric fields. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2017, 522, 373-381.	2.3	9

#	Article	IF	CITATIONS
19	Synthetic Nanosheets from Ion-Exchangeable Layered Solids. Nanostructure Science and Technology, 2017, , 55-100.	0.1	1
20	Colloidal Nanosheets. Nanostructure Science and Technology, 2017, , 201-260.	0.1	5
21	Flow-Induced Assembly of Colloidal Liquid Crystalline Nanosheets Toward Unidirectional Macroscopic Structures. Journal of Nanoscience and Nanotechnology, 2016, 16, 2967-2974.	0.9	4
22	Photoinduced electron transfer between semiconducting nanosheets and acceptor molecules in the presence of colloidal clay particles. Applied Clay Science, 2016, 130, 76-82.	2.6	2
23	Thermo-responsive hydrogels containing mesoporous silica toward controlled and sustainable releases. Materials Letters, 2016, 168, 176-179.	1.3	23
24	Perspective: Recent Developments in Hybrid Hydrogels Containing Inorganic Nanomaterials. Nanoscience and Nanotechnology Letters, 2016, 8, 355-359.	0.4	7
25	Rýcktitelbild: Polymeric Micelle Assembly with Inorganic Nanosheets for Construction of Mesoporous Architectures with Crystallized Walls (Angew. Chem. 14/2015). Angewandte Chemie, 2015, 127, 4478-4478.	1.6	0
26	Deposition of plasmonic silver nanoparticles onto semiconducting oxide nanosheets and their photochromic behavior. Journal of the Ceramic Society of Japan, 2015, 123, 809-812.	0.5	2
27	Synergistic photocatalytic hydrogen evolution over oxide nanosheets combined with photochemically inert additives. Physical Chemistry Chemical Physics, 2015, 17, 5547-5550.	1.3	14
28	Asymmetric Supercapacitors Using 3D Nanoporous Carbon and Cobalt Oxide Electrodes Synthesized from a Single Metal–Organic Framework. ACS Nano, 2015, 9, 6288-6296.	7.3	890
29	Polymeric Micelle Assembly with Inorganic Nanosheets for Construction of Mesoporous Architectures with Crystallized Walls. Angewandte Chemie - International Edition, 2015, 54, 4222-4225.	7.2	64
30	Effects of sol–gel transition of clay colloids on the spectroscopic behavior of cationic dye adsorbed on the clay particles. Applied Clay Science, 2015, 118, 29-37.	2.6	10
31	Decomposition of a cyanine dye in binary nanosheet colloids of photocatalytically active niobate and inert clay. Journal of Materials Science, 2014, 49, 915-922.	1.7	11
32	Behavior of polymer chains grafted from latex particles at soft interfaces. Colloid and Polymer Science, 2014, 292, 547-555.	1.0	1
33	Multiphase coexistence and destabilization of liquid crystalline binary nanosheet colloids of titanate and clay. Soft Matter, 2014, 10, 3161.	1.2	22
34	Panoscopic organization of anisotropic colloidal structures from photofunctional inorganic nanosheet liquid crystals. Physical Chemistry Chemical Physics, 2014, 16, 955-962.	1.3	21
35	Aspect-ratio-dependent phase transitions and concentration fluctuations in aqueous colloidal dispersions of charged platelike particles. Physical Review E, 2012, 85, 011403.	0.8	22
36	Liquid Crystalline Inorganic Nanosheet Colloids Derived From Layered Materials. Israel Journal of Chemistry, 2012, 52, 881-894.	1.0	68

#	Article	IF	Citations
37	Photoinduced Electron Transfer between Ruthenium-bipyridyl Complex and Methylviologen in Suspensions of Smectite Clays. Journal of Physical Chemistry C, 2012, 116, 8562-8570.	1.5	12
38	Pickering Emulsions Prepared by Layered Niobate K ₄ Nb ₆ O ₁₇ Intercalated with Organic Cations and Photocatalytic Dye Decomposition in the Emulsions. ACS Applied Materials & Decomposition in the Emulsions. ACS	4.0	30
39	Electrooptic Response of Colloidal Liquid Crystals of Inorganic Oxide Nanosheets Prepared by Exfoliation of a Layered Niobate. Journal of Physical Chemistry C, 2011, 115, 8934-8939.	1.5	37
40	Visible-light-induced electron transfer in intercalation-type composites organized on photocatalytically active layered niobate. Journal of the Ceramic Society of Japan, 2011, 119, 528-531.	0.5	1
41	Photoinduced electron accumulation in colloidally dispersed wide band-gap semiconductor nanosheets. Journal of Colloid and Interface Science, 2011, 354, 38-44.	5.0	6
42	Adsorptive and Photocatalytic Removal of Phenol by Layered Niobates Organically Modified Through Intercalation and Silylation. Journal of Nanoscience and Nanotechnology, 2010, 10, 8341-8348.	0.9	2
43	Interlayer modification of a layered H-octosilicate (H-RUB-18) with methanol: formation of a highly ordered organosilicate nanohybrid. Journal of Materials Chemistry, 2010, 20, 3202.	6.7	21
44	Preparation of a layered hexaniobate–titania nanocomposite and its photocatalytic activity on removal of phenol in water. Journal of Porous Materials, 2009, 16, 151-156.	1.3	8
45	Photoinduced electron transfer in nanostructured assemblies of layered semiconducting oxide and methylviologen: Effect of the location of acceptor molecules. Microporous and Mesoporous Materials, 2009, 123, 280-288.	2.2	25
46	Photoinduced Charge Separation in a Colloidal System of Exfoliated Layered Semiconductor Controlled by Coexisting Aluminosilicate Clay. Journal of Physical Chemistry B, 2009, 113, 1323-1331.	1.2	26
47	Liquid Crystalline Behavior and Related Properties of Colloidal Systems of Inorganic Oxide Nanosheets. Materials, 2009, 2, 1734-1761.	1.3	57
48	Structural response of organically modified layered niobate K4Nb6O17 to the adsorption of 2,4-dichlorophenol. Microporous and Mesoporous Materials, 2008, 110, 223-231.	2.2	12
49	Photochemical behavior of rhodamine 6G dye intercalated in photocatalytically active layered hexaniobate. Microporous and Mesoporous Materials, 2008, 113, 81-89.	2.2	23
50	Photoelectrochemical behavior of a rhodamine dye intercalated in a photocatalytically active layered niobate and photochemically inert clay. Journal of the Ceramic Society of Japan, 2008, 116, 555-560.	0.5	3
51	Colloidal State of Exfoliated Oxide Nanosheets of Layered Niobate Characterized with a Molecular-Level Spectroscopic Technique and Macroscopic Observations. Bulletin of the Chemical Society of Japan, 2007, 80, 2451-2456.	2.0	5
52	Dispersion of Layered Hexaniobate in Organic Solvents through Silylation and Liquid Crystalline Behavior of the Colloidal Suspension. Chemistry Letters, 2007, 36, 1240-1241.	0.7	14
53	Extremely Stable Photoinduced Charge Separation in a Colloidal System Composed of Semiconducting Niobate and Clay Nanosheets. Angewandte Chemie - International Edition, 2007, 46, 4123-4127.	7.2	68
54	Hierarchical structure of niobate nanosheets in aqueous solution. Journal of Applied Crystallography, 2007, 40, s101-s105.	1.9	22

#	Article	IF	Citations
55	Orientational Control and Photocatalytic Properties of Liquid Crystals Composed of Titanium Oxide Nanosheets. Hosokawa Powder Technology Foundation ANNUAL REPORT, 2007, 15, 72-76.	0.0	O
56	Competitive adsorption of phenols on organically modified layered hexaniobate K4Nb6O17. Microporous and Mesoporous Materials, 2006, 96, 84-92.	2.2	31
57	Mesophase of colloidally dispersed nanosheets prepared by exfoliation of layered titanate and niobate. Thin Solid Films, 2006, 495, 24-28.	0.8	27
58	Preparation of a Layered Titanoniobic Acid—Alumina Nanocomposite and Its Potential Applicability to Removal of Organic Contaminants in Water. Journal of Porous Materials, 2004, 11, 79-86.	1.3	3
59	Stable liquid crystalline phases of colloidally dispersed exfoliated layered niobatesElectronic supplementary information (ESI) available: XRD patterns of the samples. See http://www.rsc.org/suppdata/cc/b3/b309628a/. Chemical Communications, 2004, , 78.	2.2	47
60	Liquid Crystalline Nanosheet Colloids with Controlled Particle Size Obtained by Exfoliating Single Crystal of Layered Niobate K4Nb6O17. Journal of Physical Chemistry B, 2004, 108, 6152-6159.	1.2	109
61	Humidity-Dependent Reversible Aggregation of Rhodamine 6G Dye Immobilized within Layered Niobate K4Nb6O17. Langmuir, 2004, 20, 7583-7588.	1.6	25
62	Solâ ⁻ 'Gel Transition of Niobium Oxide Nanosheet Colloids:Â Hierarchical Aspect of a Novel Macroscopic Property Appearing in Colloidally Dispersed States of Layered Niobate K4Nb6O17. Langmuir, 2003, 19, 3157-3163.	1.6	29
63	Liquid Crystalline Colloidal System Obtained by Mixing Niobate and Aluminosilicate Nanosheets:Â A Spectroscopic Study Using a Probe Dye. Langmuir, 2003, 19, 8057-8064.	1.6	38
64	Adsorption of Phenols in Water by Organically Modified Layered Niobate K4Nb6O17. Chemistry Letters, 2003, 32, 72-73.	0.7	10
65	Sol–gel transition of nanosheet colloids of layered niobate K4Nb6O17. Journal of Materials Chemistry, 2002, 12, 1245-1246.	6.7	32
66	Intercalation compound of VOPO4·2H2O with acrylamide: preparation and exfoliation. Journal of Materials Chemistry, 2001, 11, 1858-1863.	6.7	67
67	Intercalation of a free-base porphyrin into layered tetratitanic acid. Journal of the Chemical Society Dalton Transactions, 1993, , 1405.	1.1	29
68	Synthesis of Two Types of Intercalation Compounds of K4Nb6O17with Tris(2,2′-bipyridyl) Metal Complex Ions. Bulletin of the Chemical Society of Japan, 1992, 65, 322-328.	2.0	60