Neil S Cobb

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/10776707/publications.pdf Version: 2024-02-01

NEIL S CORR

#	Article	IF	CITATIONS
1	Regional vegetation die-off in response to global-change-type drought. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102, 15144-15148.	7.1	1,779
2	TREE-RING VARIATION IN PINYON PREDICTS LIKELIHOOD OF DEATH FOLLOWING SEVERE DROUGHT. Ecology, 2000, 81, 3237-3243.	3.2	178
3	INSECT HERBIVORY INCREASES LITTER QUALITY AND DECOMPOSITION: AN EXTENSION OF THE ACCELERATION HYPOTHESIS. Ecology, 2003, 84, 2867-2876.	3.2	176
4	Relationship of stand characteristics to droughtâ€induced mortality in three Southwestern piñon–juniper woodlands. Ecological Applications, 2009, 19, 1223-1230.	3.8	150
5	GENETIC DIFFERENTIATION AND HETEROZYGOSITY IN PINYON PINE ASSOCIATED WITH RESISTANCE TO HERBIVORY AND ENVIRONMENTAL STRESS. Evolution; International Journal of Organic Evolution, 1991, 45, 989-999.	2.3	116
6	Extreme climatic eventâ€ŧriggered overstorey vegetation loss increases understorey solar input regionally: primary and secondary ecological implications. Journal of Ecology, 2011, 99, 714-723.	4.0	102
7	Decreased streamflow in semi-arid basins following drought-induced tree die-off: A counter-intuitive and indirect climate impact on hydrology. Journal of Hydrology, 2011, 406, 225-233.	5.4	92
8	Precipitation thresholds and droughtâ€induced tree dieâ€off: insights from patterns of <i><scp>P</scp>inus edulis</i> mortality along an environmental stress gradient. New Phytologist, 2013, 200, 413-421.	7.3	78
9	Herbivore deme formation on individual trees: a test case. Oecologia, 1993, 94, 496-502.	2.0	53
10	Toward accounting for ecoclimate teleconnections: intra- and inter-continental consequences of altered energy balance after vegetation change. Landscape Ecology, 2016, 31, 181-194.	4.2	53
11	Woodland resilience to regional drought: Dominant controls on tree regeneration following overstorey mortality. Journal of Ecology, 2018, 106, 625-639.	4.0	51
12	Arthropod community diversity and trophic structure: a comparison between extremes of plant stress. Ecological Entomology, 2008, 33, 1-11.	2.2	50
13	Long-Term Tree Cover Dynamics in a Pinyon-Juniper Woodland: Climate-Change-Type Drought Resets Successional Clock. Ecosystems, 2011, 14, 949-962.	3.4	50
14	Genetic Differentiation and Heterozygosity in Pinyon Pine Associated with Resistance to Herbivory and Environmental Stress. Evolution; International Journal of Organic Evolution, 1991, 45, 989.	2.3	48
15	Negative Effects of Scale Insect Herbivory on the Ectomycorrhizae of Juvenile Pinyon Pine. Ecology, 1993, 74, 2297-2302.	3.2	48
16	Herbivory, plant resistance, and climate in the tree ring record: Interactions distort climatic reconstructions. Proceedings of the National Academy of Sciences of the United States of America, 2002, 99, 10197-10202.	7.1	46
17	Woodland recovery following droughtâ€induced tree mortality across an environmental stress gradient. Global Change Biology, 2015, 21, 3685-3695	9.5	38
18	Long-term effects of chaining treatments on vegetation structure in piñon–juniper woodlands of the Colorado Plateau. Forest Ecology and Management, 2013, 305, 120-128.	3.2	37

NEIL S COBB

#	Article	IF	CITATIONS
19	A Dirty Dozen Ways to Die: Metrics and Modifiers of Mortality Driven by Drought and Warming for a Tree Species. Frontiers in Forests and Global Change, 2018, 1, .	2.3	35
20	Long-term sexual allocation in herbivore resistant and susceptible pinyon pine (Pinus edulis). Oecologia, 2002, 130, 78-87.	2.0	34
21	Genetic variation associated with chronic water and nutrient stress in pinyon pine. American Journal of Botany, 1994, 81, 936-940.	1.7	33
22	The transition from bee-to-fly dominated communities with increasing elevation and greater forest canopy cover. PLoS ONE, 2019, 14, e0217198.	2.5	33
23	Ecohydrological energy inputs in semiarid coniferous gradients: Responses to management- and drought-induced tree reductions. Forest Ecology and Management, 2010, 260, 1646-1655.	3.2	30
24	Density-Dependent Ecohydrological Effects of Piñon–Juniper Woody Canopy Cover on Soil Microclimate and Potential Soil Evaporation. Rangeland Ecology and Management, 2012, 65, 11-20.	2.3	30
25	Assessment of North American arthropod collections: prospects and challenges for addressing biodiversity research. PeerJ, 2019, 7, e8086.	2.0	29
26	From Bees to Flies: Global Shift in Pollinator Communities Along Elevation Gradients. Frontiers in Ecology and Evolution, 2021, 8, .	2.2	27
27	Bioclimatic Envelopes for Individual Demographic Events Driven by Extremes: Plant Mortality from Drought and Warming. International Journal of Plant Sciences, 2019, 180, 53-62.	1.3	25
28	Groundâ€dwelling arthropod responses to succession in a pinyonâ€juniper woodland. Ecosphere, 2014, 5, 1-29.	2.2	19
29	Vegetation Management Across Colorado Plateau BLM Lands: 1950–2003. Rangeland Ecology and Management, 2014, 67, 636-640.	2.3	19
30	Environmental filtering of body size and darker coloration in pollinator communities indicate thermal restrictions on bees, but not flies, at high elevations. PeerJ, 2019, 7, e7867.	2.0	19
31	Regional Collections Are an Essential Component of Biodiversity Research Infrastructure. BioScience, 2020, 70, 1045-1047.	4.9	17
32	Genetic Variation Associated with Chronic Water and Nutrient Stress in Pinyon Pine. American Journal of Botany, 1994, 81, 936.	1.7	16
33	Aggregated occurrence records of the federally endangered Poweshiek skipperling (Oarisma) Tj ETQq1 1 0.7843	14 rgBT /(Overlock 10 T
34	Effects of a nonnative, invasive lovegrass on Agave palmeri distribution, abundance, and insect pollinator communities. Biodiversity and Conservation, 2011, 20, 3251-3266.	2.6	15
35	LepNet: The Lepidoptera of North America Network. Zootaxa, 2017, 4247, 73-77.	0.5	15
36	Prevention of Deme Formation by the Pinyon Needle Scale: Problems of Specializing in a Dynamic System. , 1998, , 37-63.		15

NEIL S COBB

#	Article	IF	CITATIONS
37	Precipitation and the robustness of a plant and flower-visiting insect network in a xeric ecosystem. Journal of Arid Environments, 2017, 144, 48-59.	2.4	14
38	Decline of Amateur Lepidoptera Collectors Threatens the Future of Specimen-Based Research. BioScience, 2021, 71, 396-404.	4.9	14
39	Tree Cover Discrimination in Panchromatic Aerial Imagery of Pinyon-Juniper Woodlands. Photogrammetric Engineering and Remote Sensing, 2004, 70, 1063-1068.	0.6	13
40	A robust method to determine historical annual cone production among slow-growing conifers. Forest Ecology and Management, 2016, 368, 1-6.	3.2	13
41	Genetic-Based Susceptibility of a Foundation Tree to Herbivory Interacts With Climate to Influence Arthropod Community Composition, Diversity, and Resilience. Frontiers in Plant Science, 2018, 9, 1831.	3.6	11
42	Decreased bee emergence along an elevation gradient: Implications for climate change revealed by a transplant experiment. Ecology, 2022, 103, e03598.	3.2	11
43	Pinyon Pine Mortality Alters Communities of Ground-Dwelling Arthropods. Western North American Naturalist, 2014, 74, 162-184.	0.4	10
44	Relative Importance of Environmental Stress and Herbivory in Reducing Litter Fall in a Semiarid Woodland. Ecosystems, 2005, 8, 62-72.	3.4	9
45	Long-Term Studies Reveal Differential Responses to Climate Change for Trees Under Soil- or Herbivore-Related Stress. Frontiers in Plant Science, 2019, 10, 132.	3.6	9
46	BEE DIVERSITY AND ABUNDANCE ALONG AN ELEVATIONAL GRADIENT IN NORTHERN ARIZONA. , 0, , 159-189.		6
47	Bee species checklist of the San Francisco Peaks, Arizona. Biodiversity Data Journal, 2020, 8, e49285.	0.8	6
48	Prototype campaign assessment of disturbanceâ€induced tree loss effects on surface properties for atmospheric modeling. Ecosphere, 2017, 8, e01698.	2.2	5
49	Targeting Extreme Events: Complementing Near-Term Ecological Forecasting With Rapid Experiments and Regional Surveys. Frontiers in Environmental Science, 2019, 7, .	3.3	5
50	Variation in Plant–Pollinator Network Structure along the Elevational Gradient of the San Francisco Peaks, Arizona. Insects, 2021, 12, 1060.	2.2	5
51	Dead again: Predictions of repeat tree die-off under hotter droughts confirm mortality thresholds for a dryland conifer species. Environmental Research Letters, 0, , .	5.2	3