Tsutomu Motohashi

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/10776141/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Generation of structures formed by lens and retinal cells differentiating from embryonic stem cells. Developmental Dynamics, 2003, 228, 664-671.	1.8	108
2	Multipotent Cell Fate of Neural Crest-Like Cells Derived from Embryonic Stem Cells. Stem Cells, 2007, 25, 402-410.	3.2	76
3	Transplantation of cells from eye-like structures differentiated from embryonic stem cells in vitro and in vivo regeneration of retinal ganglion-like cells. Graefe's Archive for Clinical and Experimental Ophthalmology, 2008, 246, 255-265.	1.9	68
4	Embryonic stem cells that differentiate into RPE cell precursors in vitro develop into RPE cell monolayers in vivo. Experimental Eye Research, 2006, 82, 265-274.	2.6	61
5	Unexpected Multipotency of Melanoblasts Isolated from Murine Skin. Stem Cells, 2009, 27, 888-897.	3.2	38
6	Tracing Sox10-expressing cells elucidates the dynamic development ofÂthe mouse inner ear. Hearing Research, 2013, 302, 17-25.	2.0	36
7	Culture method for the induction of neurospheres from mouse embryonic stem cells by coculture with PA6 stromal cells. Journal of Neuroscience Research, 2005, 80, 467-474.	2.9	35
8	Cooperative and indispensable roles of endothelin 3 and KIT signalings in melanocyte development. Developmental Dynamics, 2005, 233, 407-417.	1.8	32
9	Keratinocyte Stem Cells but Not Melanocyte Stem Cells Are the Primary Target for Radiation-Induced Hair Graying. Journal of Investigative Dermatology, 2013, 133, 2143-2151.	0.7	32
10	Early Development of Resident Macrophages in the Mouse Cochlea Depends on Yolk Sac Hematopoiesis. Frontiers in Neurology, 2019, 10, 1115.	2.4	31
11	An in vitro mouse model for retinal ganglion cell replacement therapy using eye-like structures differentiated from ES cells. Experimental Eye Research, 2007, 84, 868-875.	2.6	27
12	Extended Multipotency of Neural Crest Cells and Neural Crest-Derived Cells. Current Topics in Developmental Biology, 2015, 111, 69-95.	2.2	27
13	Induction of melanocytes from embryonic stem cells and their therapeutic potential. Pigment Cell & Melanoma Research, 2006, 19, 284-289.	3.6	26
14	Neural crest cells retain their capability for multipotential differentiation even after lineageâ€restricted stages. Developmental Dynamics, 2011, 240, 1681-1693.	1.8	26
15	The stemness of neural crest cells and their derivatives. Birth Defects Research Part C: Embryo Today Reviews, 2014, 102, 251-262.	3.6	22
16	Protective Effect of Kit Signaling for Melanocyte Stem Cells against Radiation-Induced Genotoxic Stress. Journal of Investigative Dermatology, 2011, 131, 1906-1915.	0.7	21
17	Maintenance of undifferentiated mouse embryonic stem cells in suspension by the serum―and feederâ€free defined culture condition. Developmental Dynamics, 2008, 237, 2129-2138.	1.8	16
18	Neural crestâ€derived cells sustain their multipotency even after entry into their target tissues. Developmental Dynamics, 2014, 243, 368-380.	1.8	15

Тѕитоми Мотонаѕні

#	Article	IF	CITATIONS
19	Increased cell surface expression of C -terminal truncated erythropoietin receptors in polycythemia. European Journal of Haematology, 2001, 67, 88-93.	2.2	14
20	Mice Transgenic for KitV620A: Recapitulation of Piebaldism but not Progressive Depigmentation Seen in Humans with this Mutation. Journal of Investigative Dermatology, 2006, 126, 1111-1118.	0.7	14
21	Characterization of the mouse interleukin-13 receptor $\hat{I}\pm 1$ gene. Immunogenetics, 2000, 51, 974-981.	2.4	10
22	Functionally distinct melanocyte populations revealed by reconstitution of hair follicles in mice. Pigment Cell and Melanoma Research, 2011, 24, 125-135.	3.3	10
23	Gene array analysis of neural crest cells identifies transcription factors necessary for direct conversion of embryonic fibroblasts into neural crest cells. Biology Open, 2016, 5, 311-322.	1.2	10
24	Dual origin of melanocytes defined by <scp>S</scp> ox1 expression and their regionâ€specific distribution in mammalian skin. Development Growth and Differentiation, 2013, 55, 270-281.	1.5	9
25	lris as a recipient tissue for pigment cells: Organized in vivo differentiation of melanocytes and pigmented epithelium derived from embryonic stem cells in vitro. Developmental Dynamics, 2008, 237, 2394-2404.	1.8	8
26	Multipotency of melanoblasts isolated from murine skin depends on the notch signal. Developmental Dynamics, 2016, 245, 460-471.	1.8	7
27	Sox10 Functions as an Inducer of the Direct Conversion of Keratinocytes Into Neural Crest Cells. Stem Cells and Development, 2020, 29, 1510-1519.	2.1	7
28	Galectin-1 enhances the generation of neural crest cells. International Journal of Developmental Biology, 2017, 61, 407-413.	0.6	6
29	Isolation and characterization of Kitâ€independent melanocyte precursors induced in the skin of Steel factor transgenic mice. Development Growth and Differentiation, 2008, 50, 63-69.	1.5	5
30	Development of Melanocytes from ES Cells. Methods in Enzymology, 2003, 365, 341-349.	1.0	4
31	Direct Conversion of Mouse Embryonic Fibroblasts into Neural Crest Cells. Methods in Molecular Biology, 2018, 1879, 307-321.	0.9	3
32	A Transmembrane Trap Method for Efficient Cloning of Genes Encoding Proteins Possessing Transmembrane Domain. Biochemical and Biophysical Research Communications, 2001, 289, 1192-1198.	2.1	2
33	Melanoblasts as Multipotent Cells in Murine Skin. Methods in Molecular Biology, 2013, 989, 183-192.	0.9	1
34	Melanoblasts as Multipotent Cells in Murine Skin. Methods in Molecular Biology, 2018, 1879, 257-266.	0.9	1