
Xinliang Li

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1077606/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Ti ₃ C ₂ MXenes with Modified Surface for High-Performance Electromagnetic Absorption and Shielding in the X-Band. ACS Applied Materials & Interfaces, 2016, 8, 21011-21019.	8.0	775
2	Dendrites in Znâ€Based Batteries. Advanced Materials, 2020, 32, e2001854.	21.0	601
3	Selfâ€Assembly Core–Shell Grapheneâ€Bridged Hollow MXenes Spheres 3D Foam with Ultrahigh Specific EM Absorption Performance. Advanced Functional Materials, 2018, 28, 1803938.	14.9	561
4	Three-dimensional reduced graphene oxide foam modified with ZnO nanowires for enhanced microwave absorption properties. Carbon, 2017, 116, 50-58.	10.3	525
5	Voltage issue of aqueous rechargeable metal-ion batteries. Chemical Society Reviews, 2020, 49, 180-232.	38.1	522
6	Do Zinc Dendrites Exist in Neutral Zinc Batteries: A Developed Electrohealing Strategy to In Situ Rescue In‣ervice Batteries. Advanced Materials, 2019, 31, e1903778.	21.0	494
7	Lightweight Ti ₂ CT <i>_x</i> MXene/Poly(vinyl alcohol) Composite Foams for Electromagnetic Wave Shielding with Absorption-Dominated Feature. ACS Applied Materials & Interfaces, 2019, 11, 10198-10207.	8.0	488
8	MXene chemistry, electrochemistry and energy storage applications. Nature Reviews Chemistry, 2022, 6, 389-404.	30.2	429
9	Carbon Hollow Microspheres with a Designable Mesoporous Shell for High-Performance Electromagnetic Wave Absorption. ACS Applied Materials & Interfaces, 2017, 9, 6332-6341.	8.0	428
10	Activating Câ€Coordinated Iron of Iron Hexacyanoferrate for Zn Hybridâ€Ion Batteries with 10 000 ycle Lifespan and Superior Rate Capability. Advanced Materials, 2019, 31, e1901521.	21.0	363
11	Ti ₃ C ₂ MXenes modified with in situ grown carbon nanotubes for enhanced electromagnetic wave absorption properties. Journal of Materials Chemistry C, 2017, 5, 4068-4074.	5.5	345
12	Achieving Highâ€Voltage and Highâ€Capacity Aqueous Rechargeable Zinc Ion Battery by Incorporating Twoâ€Species Redox Reaction. Advanced Energy Materials, 2019, 9, 1902446.	19.5	341
13	Laminated and Two-Dimensional Carbon-Supported Microwave Absorbers Derived from MXenes. ACS Applied Materials & Interfaces, 2017, 9, 20038-20045.	8.0	323
14	Flexible and Thermostable Graphene/SiC Nanowire Foam Composites with Tunable Electromagnetic Wave Absorption Properties. ACS Applied Materials & Interfaces, 2017, 9, 11803-11810.	8.0	315
15	Achieving Both High Voltage and High Capacity in Aqueous Zincâ€lon Battery for Record High Energy Density. Advanced Functional Materials, 2019, 29, 1906142.	14.9	285
16	Mesoporous carbon hollow microspheres with red blood cell like morphology for efficient microwave absorption at elevated temperature. Carbon, 2018, 132, 343-351.	10.3	280
17	Anisotropic MXene Aerogels with a Mechanically Tunable Ratio of Electromagnetic Wave Reflection to Absorption. Advanced Optical Materials, 2019, 7, 1900267.	7.3	245
18	A Wholly Degradable, Rechargeable Zn–Ti ₃ C ₂ MXene Capacitor with Superior Anti-Self-Discharge Function. ACS Nano, 2019, 13, 8275-8283.	14.6	224

#	Article	IF	CITATIONS
19	Initiating Hexagonal MoO ₃ for Superbâ€Stable and Fast NH ₄ ⁺ Storage Based on Hydrogen Bond Chemistry. Advanced Materials, 2020, 32, e1907802.	21.0	186
20	Halogenated Ti ₃ C ₂ MXenes with Electrochemically Active Terminals for High-Performance Zinc Ion Batteries. ACS Nano, 2021, 15, 1077-1085.	14.6	183
21	Phase Transition Induced Unusual Electrochemical Performance of V ₂ CT _X MXene for Aqueous Zinc Hybrid-Ion Battery. ACS Nano, 2020, 14, 541-551.	14.6	179
22	A controllable heterogeneous structure and electromagnetic wave absorption properties of Ti ₂ CT _x MXene. Journal of Materials Chemistry C, 2017, 5, 7621-7628.	5.5	177
23	Ultralight MXene-Coated, Interconnected SiCnws Three-Dimensional Lamellar Foams for Efficient Microwave Absorption in the X-Band. ACS Applied Materials & Interfaces, 2018, 10, 34524-34533.	8.0	172
24	2D carbide MXene Ti2CTX as a novel high-performance electromagnetic interference shielding material. Carbon, 2019, 146, 210-217.	10.3	161
25	Grafted MXene/polymer electrolyte for high performance solid zinc batteries with enhanced shelf life at low/high temperatures. Energy and Environmental Science, 2021, 14, 3492-3501.	30.8	152
26	Phosphorene as Cathode Material for Highâ€Voltage, Antiâ€Selfâ€Discharge Zinc Ion Hybrid Capacitors. Advanced Energy Materials, 2020, 10, 2001024.	19.5	149
27	Highly Efficient Electrochemical Reduction of Nitrogen to Ammonia on Surface Termination Modified Ti ₃ C ₂ T _{<i>x</i>} MXene Nanosheets. ACS Nano, 2020, 14, 9089-9097.	14.6	137
28	Toward a Practical Zn Powder Anode: Ti ₃ C ₂ T <i>x</i> MXene as a Lattice-Match Electrons/Ions Redistributor. ACS Nano, 2021, 15, 14631-14642.	14.6	137
29	A Flexible Solidâ€State Aqueous Zinc Hybrid Battery with Flat and Highâ€Voltage Discharge Plateau. Advanced Energy Materials, 2019, 9, 1902473.	19.5	136
30	Recent Progress of <scp>MX</scp> eneâ€Based Nanomaterials in Flexible Energy Storage and Electronic Devices. Energy and Environmental Materials, 2018, 1, 183-195.	12.8	135
31	Building durable aqueous K-ion capacitors based on MXene family. , 2022, 1, e9120002.		131
32	Activating the I ⁰ /I ⁺ redox couple in an aqueous I ₂ –Zn battery to achieve a high voltage plateau. Energy and Environmental Science, 2021, 14, 407-413.	30.8	129
33	In Situ Electrochemical Synthesis of MXenes without Acid/Alkali Usage in/for an Aqueous Zinc Ion Battery. Advanced Energy Materials, 2020, 10, 2001791.	19.5	128
34	Vertically Aligned Sn ⁴⁺ Preintercalated Ti ₂ CT _X MXene Sphere with Enhanced Zn Ion Transportation and Superior Cycle Lifespan. Advanced Energy Materials, 2020, 10, 2001394.	19.5	127
35	Stabilizing Interface pH by Nâ€Modified Graphdiyne for Dendriteâ€Free and Highâ€Rate Aqueous Znâ€ŀon Batteries. Angewandte Chemie - International Edition, 2022, 61, .	13.8	124
36	Effects of Anion Carriers on Capacitance and Selfâ€Discharge Behaviors of Zinc Ion Capacitors. Angewandte Chemie - International Edition, 2021, 60, 1011-1021.	13.8	122

#	Article	IF	CITATIONS
37	Enhanced Redox Kinetics and Duration of Aqueous I ₂ /I ^{â^'} Conversion Chemistry by MXene Confinement. Advanced Materials, 2021, 33, e2006897.	21.0	121
38	Electrocatalytic Iodine Reduction Reaction Enabled by Aqueous Zinc″odine Battery with Improved Power and Energy Densities. Angewandte Chemie - International Edition, 2021, 60, 3791-3798.	13.8	111
39	Aqueous Zinc–Tellurium Batteries with Ultraflat Discharge Plateau and High Volumetric Capacity. Advanced Materials, 2020, 32, e2001469.	21.0	104
40	Manipulating anion intercalation enables a high-voltage aqueous dual ion battery. Nature Communications, 2021, 12, 3106.	12.8	104
41	Liquidâ€Free Allâ€Solidâ€State Zinc Batteries and Encapsulationâ€Free Flexible Batteries Enabled by Inâ€Situ Constructed Polymer Electrolyte. Angewandte Chemie - International Edition, 2020, 59, 23836-23844.	13.8	102
42	Constructing a tunable heterogeneous interface in bimetallic metal-organic frameworks derived porous carbon for excellent microwave absorption performance. Carbon, 2019, 148, 421-429.	10.3	100
43	Ultralight Cellular Foam from Cellulose Nanofiber/Carbon Nanotube Self-Assemblies for Ultrabroad-Band Microwave Absorption. ACS Applied Materials & Interfaces, 2019, 11, 22628-22636.	8.0	99
44	Zinc/selenium conversion battery: a system highly compatible with both organic and aqueous electrolytes. Energy and Environmental Science, 2021, 14, 2441-2450.	30.8	93
45	Lattice Matching and Halogen Regulation for Synergistically Induced Uniform Zinc Electrodeposition by Halogenated Ti ₃ C ₂ MXenes. ACS Nano, 2022, 16, 813-822.	14.6	90
46	Aqueous Rechargeable Metalâ€ion Batteries Working at Subzero Temperatures. Advanced Science, 2021, 8, 2002590.	11.2	89
47	Initiating a Reversible Aqueous Zn/Sulfur Battery through a "Liquid Film― Advanced Materials, 2020, 32, e2003070.	21.0	88
48	Accommodating diverse ions in Prussian blue analogs frameworks for rechargeable batteries: The electrochemical redox reactions. Nano Energy, 2021, 81, 105632.	16.0	88
49	A Usage Scenario Independent "Air Chargeable―Flexible Zinc Ion Energy Storage Device. Advanced Energy Materials, 2019, 9, 1900509.	19.5	80
50	Confining Aqueous Zn–Br Halide Redox Chemistry by Ti ₃ C ₂ T _X MXene. ACS Nano, 2021, 15, 1718-1726.	14.6	78
51	Commencing an Acidic Battery Based on a Copper Anode with Ultrafast Protonâ€Regulated Kinetics and Superior Dendriteâ€Free Property. Advanced Materials, 2019, 31, e1905873.	21.0	77
52	A zinc battery with ultra-flat discharge plateau through phase transition mechanism. Nano Energy, 2020, 71, 104583.	16.0	75
53	Intrinsic voltage plateau of a Nb2CTx MXene cathode in an aqueous electrolyte induced by high-voltage scanning. Joule, 2021, 5, 2993-3005.	24.0	74
54	Commencing mild Ag–Zn batteries with long-term stability and ultra-flat voltage platform. Energy Storage Materials, 2020, 25, 86-92.	18.0	68

Xinliang Li

#	Article	IF	CITATIONS
55	Hydrated hybrid vanadium oxide nanowires as the superior cathode for aqueous Zn battery. Materials Today Energy, 2019, 14, 100361.	4.7	67
56	Environmental Stability of MXenes as Energy Storage Materials. Frontiers in Materials, 2019, 6, .	2.4	65
57	Ultra-light, high flexible and efficient CNTs/Ti3C2-sodium alginate foam for electromagnetic absorption application. Journal of Materials Science and Technology, 2019, 35, 2859-2867.	10.7	60
58	Smallâ€Dipoleâ€Moleculeâ€Containing Electrolytes for Highâ€Voltage Aqueous Rechargeable Batteries. Advanced Materials, 2022, 34, e2106180.	21.0	58
59	Ni ₃ S ₂ /Ni nanosheet arrays for high-performance flexible zinc hybrid batteries with evident two-stage charge and discharge processes. Journal of Materials Chemistry A, 2019, 7, 18915-18924.	10.3	55
60	A rechargeable Al–N ₂ battery for energy storage and highly efficient N ₂ fixation. Energy and Environmental Science, 2020, 13, 2888-2895.	30.8	53
61	Few-layer bismuth selenide cathode for low-temperature quasi-solid-state aqueous zinc metal batteries. Nature Communications, 2022, 13, 752.	12.8	49
62	Conversionâ€Type Nonmetal Elemental Tellurium Anode with High Utilization for Mild/Alkaline Zinc Batteries. Advanced Materials, 2021, 33, e2105426.	21.0	48
63	Metalâ€Tellurium Batteries: A Rising Energy Storage System. Small Structures, 2020, 1, 2000005.	12.0	46
64	Liquidâ€Free Allâ€Solidâ€State Zinc Batteries and Encapsulationâ€Free Flexible Batteries Enabled by Inâ€Situ Constructed Polymer Electrolyte. Angewandte Chemie, 2020, 132, 24044-24052.	2.0	45
65	Highly Thermally/Electrochemically Stable I ^{â^'} /I ₃ ^{â^'} Bonded Organic Salts with High I Content for Long‣ife Li–I ₂ Batteries. Advanced Energy Materials, 2022, 12,	19.5	40
66	Metalâ€īuned Acetylene Linkages in Hydrogen Substituted Graphdiyne Boosting the Electrochemical Oxygen Reduction. Small, 2020, 16, e1907341.	10.0	39
67	Electromagnetic interference shielding properties of polymer derived SiC-Si3N4 composite ceramics. Journal of Materials Science and Technology, 2019, 35, 2832-2839.	10.7	38
68	Scalable synthesis of 2D hydrogen-substituted graphdiyne on Zn substrate for high-yield N2 fixation. Nano Energy, 2020, 78, 105283.	16.0	38
69	Twoâ€Electron Redox Chemistry Enabled Highâ€Performance Iodideâ€ion Conversion Battery. Angewandte Chemie - International Edition, 2022, 61, .	13.8	34
70	Electrocatalytic Iodine Reduction Reaction Enabled by Aqueous Zincâ€ŀodine Battery with Improved Power and Energy Densities. Angewandte Chemie, 2021, 133, 3835-3842.	2.0	32
71	Cathode Engineering for High Energy Density Aqueous Zn Batteries. Accounts of Materials Research, 2022, 3, 78-88.	11.7	32
72	Initiating a wearable solid-state Mg hybrid ion full battery with high voltage, high capacity and ultra-long lifespan in air. Energy Storage Materials, 2020, 31, 451-458.	18.0	29

#	Article	IF	CITATIONS
73	Interface evolution of a C/ZnO absorption agent annealed at elevated temperature for tunable electromagnetic properties. Journal of the American Ceramic Society, 2019, 102, 5305-5315.	3.8	28
74	Tellurium: A High-Performance Cathode for Magnesium Ion Batteries Based on a Conversion Mechanism. ACS Nano, 2022, 16, 5349-5357.	14.6	28
75	Metal-Iodine and Metal-Bromine Batteries: A Review. Bulletin of the Chemical Society of Japan, 2021, 94, 2036-2042.	3.2	27
76	Stabilizing Interface pH by Nâ€Modified Graphdiyne for Dendriteâ€Free and Highâ€Rate Aqueous Znâ€Ion Batteries. Angewandte Chemie, 2022, 134, .	2.0	24
77	Bifunctional separators design for safe lithium-ion batteries: Suppressed lithium dendrites and fire retardance. Nano Energy, 2022, 97, 107204.	16.0	23
78	Broadband Microwave Absorbing Composites with a Multi-Scale Layered Structure Based on Reduced Graphene Oxide Film as the Frequency Selective Surface. Materials, 2018, 11, 1771.	2.9	21
79	Effects of Anion Carriers on Capacitance and Selfâ€Discharge Behaviors of Zinc Ion Capacitors. Angewandte Chemie, 2021, 133, 1024-1034.	2.0	21
80	Thermal stability and dielectric properties of 2D Ti ₂ C MXenes via annealing under a gas mixture of Ar and H ₂ atmosphere. Functional Composites and Structures, 2019, 1, 015002.	3.4	19
81	Dual channels of helicity cascade in turbulent flows. Journal of Fluid Mechanics, 2020, 894, .	3.4	19
82	Numerical analysis of shock wave and supersonic turbulent boundary interaction between adiabatic and cold walls. Journal of Turbulence, 2017, 18, 569-588.	1.4	17
83	Bis-ammonium salts with strong chemisorption to halide ions for fast and durable aqueous redox Zn ion batteries. Nano Energy, 2022, 98, 107278.	16.0	17
84	Low Infrared Emissivity and Strong Stealth of Ti-Based MXenes. Research, 2022, 2022, .	5.7	17
85	Stable bismuth-antimony alloy cathode with a conversion-dissolution/deposition mechanism for high-performance zinc batteries. Materials Today, 2021, 51, 87-95.	14.2	10
86	Statistical characteristics of turbulent mixing in spherical and cylindrical converging Richtmyer–Meshkov instabilities. Journal of Fluid Mechanics, 2021, 928, .	3.4	9
87	Effect of chemical reaction on mixing transition and turbulent statistics of cylindrical Richtmyer–Meshkov instability. Journal of Fluid Mechanics, 2022, 941, .	3.4	9
88	Helicity distributions and transfer in turbulent channel flows with streamwise rotation. Journal of Fluid Mechanics, 2022, 940, .	3.4	7
89	Effect of TiO2 addition on the properties of Ti3Si(Al)C2 based ceramics fabricated by reactive melt infiltration. Ceramics International, 2016, 42, 11982-11988.	4.8	5
90	Effects of alumina hollow microspheres on the properties of water-borne polyurethane films. Journal of Materials Research, 2018, 33, 2486-2493.	2.6	5

#	Article	IF	CITATIONS
91	Wall-shear stress fluctuations in a supersonic turbulent boundary layer over an expansion corner. Journal of Turbulence, 2020, 21, 355-374.	1.4	5
92	Study on turbulence drag reduction of riblet plate in hypersonic turbulent flows. International Journal of Modern Physics C, 2020, 31, 2050046.	1.7	5
93	Kinetic-energy-flux-constrained model using an artificial neural network for large-eddy simulation of compressible wall-bounded turbulence. Journal of Fluid Mechanics, 2022, 932, .	3.4	5
94	Characteristics of wall-shear stress fluctuations in shock wave and turbulent boundary layer interaction. Journal of Turbulence, 2021, 22, 761-783.	1.4	4
95	Twoâ€Electron Redox Chemistry Enabled Highâ€Performance Iodideâ€Ion Conversion Battery. Angewandte Chemie, 2022, 134, .	2.0	4