Laura Caldinelli

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/10775766/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Molecular insights into the role of the polyalanine region in mediating <scp>PHOX</scp> 2B aggregation. FEBS Journal, 2019, 286, 2505-2521.	4.7	9
2	Cellular prion protein neither binds to alpha-synuclein oligomers nor mediates their detrimental effects. Brain, 2019, 142, 249-254.	7.6	38
3	Alpha-synuclein oligomers impair memory through glial cell activation and via Toll-like receptor 2. Brain, Behavior, and Immunity, 2018, 69, 591-602.	4.1	55
4	Human d -amino acid oxidase: The inactive G183R variant. Biochimica Et Biophysica Acta - Proteins and Proteomics, 2018, 1866, 822-830.	2.3	11
5	Assays of D-Amino Acid Oxidase Activity. Frontiers in Molecular Biosciences, 2017, 4, 102.	3.5	30
6	Regulating levels of the neuromodulator <scp>d</scp> â€serine in human brain: structural insight into pLG72 and <scp>d</scp> â€amino acid oxidase interaction. FEBS Journal, 2016, 283, 3353-3370.	4.7	15
7	Structure–function relationships in human d-amino acid oxidase variants corresponding to known SNPs. Biochimica Et Biophysica Acta - Proteins and Proteomics, 2015, 1854, 1150-1159.	2.3	22
8	One single method to produce native and Tat-fused recombinant human α-synuclein in Escherichia coli. BMC Biotechnology, 2013, 13, 32.	3.3	18
9	Characterization of human DAAO variants potentially related to an increased risk of schizophrenia. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2013, 1832, 400-410.	3.8	26
10	Structure–function relationships in human d-amino acid oxidase. Amino Acids, 2012, 43, 1833-1850.	2.7	89
11	Effect of ligand binding on human <scp>D</scp> â€amino acid oxidase: Implications for the development of new drugs for schizophrenia treatment. Protein Science, 2010, 19, 1500-1512.	7.6	48
12	Relevance of weak flavin binding in human <scp>D</scp> â€amino acid oxidase. Protein Science, 2009, 18, 801-810.	7.6	43
13	FAD binding in glycine oxidase from Bacillus subtilis. Biochimie, 2009, 91, 1499-1508.	2.6	8
14	Relevance of the flavin binding to the stability and folding of engineered cholesterol oxidase containing noncovalently bound FAD. Protein Science, 2008, 17, 409-419.	7.6	22
15	Catalytic Properties of d-Amino Acid Oxidase in Cephalosporin C Bioconversion: A Comparison between Proteins from Different Sources. Biotechnology Progress, 2008, 20, 467-473.	2.6	71
16	Engineering the Properties of D-Amino Acid Oxidases by a Rational and a Directed Evolution Approach. Current Protein and Peptide Science, 2007, 8, 600-618.	1.4	35
17	Tryptophan 243 affects interprotein contacts, cofactor binding and stability in D-amino acid oxidase from Rhodotorula gracilis. FEBS Journal, 2006, 273, 504-512.	4.7	11
18	Dissecting the Structural Determinants of the Stability of Cholesterol Oxidase Containing Covalently Bound Flavin. Journal of Biological Chemistry, 2005, 280, 22572-22581.	3.4	60

LAURA CALDINELLI

#	Article	IF	CITATIONS
19	Unfolding Intermediate in the Peroxisomal Flavoprotein d-Amino Acid Oxidase. Journal of Biological Chemistry, 2004, 279, 28426-28434.	3.4	26
20	Contribution of the dimeric state to the thermal stability of the flavoprotein D-amino acid oxidase. Protein Science, 2003, 12, 1018-1029.	7.6	43
21	Dissection of the structural determinants involved in formation of the dimeric form of D-amino acid oxidase from Rhodotorula gracilis: role of the size of the ÂF5-ÂF6 loop. Protein Engineering, Design and Selection, 2003, 16, 1063-1069.	2.1	14
22	Conversion of the dimericD-amino acid oxidase fromRhodotorula gracilisto a monomeric form. A rational mutagenesis approach. FEBS Letters, 2002, 526, 43-48.	2.8	26