List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1077463/publications.pdf Version: 2024-02-01

Υληγλη Ιν

#	Article	IF	CITATIONS
1	Cellulose nanofiber–graphene all solid-state flexible supercapacitors. Journal of Materials Chemistry A, 2013, 1, 63-67.	5.2	320
2	Elastic, Conductive, Polymeric Hydrogels and Sponges. Scientific Reports, 2014, 4, 5792.	1.6	139
3	Cellulose nanofibers/multi-walled carbon nanotube nanohybrid aerogel for all-solid-state flexible supercapacitors. RSC Advances, 2013, 3, 15058.	1.7	116
4	Paper-based transparent flexible thin film supercapacitors. Nanoscale, 2013, 5, 5307.	2.8	100
5	Cellulose nanofiber/single-walled carbon nanotube hybrid non-woven macrofiber mats as novel wearable supercapacitors with excellent stability, tailorability and reliability. Nanoscale, 2014, 6, 4083.	2.8	88
6	Halloysite nanotubes and Fe3O4 nanoparticles enhanced adsorption removal of heavy metal using electrospun membranes. Applied Clay Science, 2018, 161, 225-234.	2.6	83
7	Glucono-Î^lactone controlled assembly of graphene oxide hydrogels with selectively reversible gel–sol transition. Soft Matter, 2012, 8, 4609.	1.2	79
8	Using a fully recyclable dicarboxylic acid for producing dispersible and thermally stable cellulose nanomaterials from different cellulosic sources. Cellulose, 2017, 24, 2483-2498.	2.4	77
9	Dual physically crosslinked healable polyacrylamide/cellulose nanofibers nanocomposite hydrogels with excellent mechanical properties. Carbohydrate Polymers, 2018, 193, 73-81.	5.1	77
10	Novel polymer Li-ion binder carboxymethyl cellulose derivative enhanced electrochemical performance for Li-ion batteries. Carbohydrate Polymers, 2014, 112, 532-538.	5.1	74
11	Cellulosic materials-enhanced sandwich structure-like separator via electrospinning towards safer lithium-ion battery. Carbohydrate Polymers, 2019, 214, 328-336.	5.1	62
12	Biomass-based O, N-codoped activated carbon aerogels with ultramicropores for supercapacitors. Journal of Materials Science, 2018, 53, 12374-12387.	1.7	59
13	In-situ fabricated anisotropic halide perovskite nanocrystals in polyvinylalcohol nanofibers: Shape tuning and polarized emission. Nano Research, 2019, 12, 1411-1416.	5.8	54
14	Thermally Stable Cellulose Nanocrystals toward High-Performance 2D and 3D Nanostructures. ACS Applied Materials & Interfaces, 2017, 9, 28922-28929.	4.0	53
15	Biomass applied in supercapacitor energy storage devices. Journal of Materials Science, 2021, 56, 1943-1979.	1.7	50
16	Fluorescent cellulose aerogels containing covalently immobilized (ZnS)x(CuInS2)1â^'x/ZnS (core/shell) quantum dots. Cellulose, 2013, 20, 3007-3024.	2.4	49
17	Enhanced electrochemical properties of LiFePO4 (LFP) cathode using the carboxymethyl cellulose lithium (CMC-Li) as novel binder in lithium-ion battery. Carbohydrate Polymers, 2014, 111, 588-591.	5.1	49
18	Chitosan–silica composite aerogels: preparation, characterization and Congo red adsorption. Journal of Sol-Gel Science and Technology, 2015, 76, 501-509.	1.1	49

#	Article	IF	CITATIONS
19	Cellulosic Biomass-Reinforced Polyvinylidene Fluoride Separators with Enhanced Dielectric Properties and Thermal Tolerance. ACS Applied Materials & Interfaces, 2017, 9, 20885-20894.	4.0	48
20	A cellulose-based hybrid 2D material aerogel for a flexible all-solid-state supercapacitor with high specific capacitance. RSC Advances, 2017, 7, 43512-43520.	1.7	46
21	Tough and Multifunctional Composite Film Actuators Based on Cellulose Nanofibers toward Smart Wearables. ACS Applied Materials & Interfaces, 2021, 13, 38700-38711.	4.0	43
22	Convenient fabrication of carboxymethyl cellulose electrospun nanofibers functionalized with silver nanoparticles. Cellulose, 2016, 23, 1899-1909.	2.4	42
23	Carboxymethyl cellulose lithium (CMC-Li) as a novel binder and its electrochemical performance in lithium-ion batteries. Cellulose, 2014, 21, 2789-2796.	2.4	40
24	Carboxymethyl Cellulose Nanofibrils with a Treelike Matrix: Preparation and Behavior of Pickering Emulsions Stabilization. ACS Sustainable Chemistry and Engineering, 2019, 7, 12887-12896.	3.2	40
25	Study on effects of carboxymethyl cellulose lithium (CMC-Li) synthesis and electrospinning on high-rate lithium ion batteries. Cellulose, 2014, 21, 615-626.	2.4	39
26	A Bottom-Up Synthesis of Vinyl-Cellulose Nanosheets and Their Nanocomposite Hydrogels with Enhanced Strength. Biomacromolecules, 2017, 18, 4196-4205.	2.6	37
27	Synthesis and electrospinning carboxymethyl cellulose lithium (CMC-Li) modified 9,10-anthraquinone (AQ) high-rate lithium-ion battery. Carbohydrate Polymers, 2014, 102, 986-992.	5.1	36
28	Preparation and dielectric properties of cyanoethyl cellulose/BaTiO ₃ flexible nanocomposite films. RSC Advances, 2015, 5, 15283-15291.	1.7	35
29	Enhanced permeability and antifouling performance of cellulose acetate ultrafiltration membrane assisted by I-DOPA functionalized halloysite nanotubes. Carbohydrate Polymers, 2017, 174, 688-696.	5.1	34
30	Sulfur vacancies enriched Nickel-Cobalt sulfides hollow spheres with high performance for All-Solid-State hybrid supercapacitor. Journal of Colloid and Interface Science, 2021, 601, 640-649.	5.0	34
31	Nanocomposites membranes from cellulose nanofibers, SiO2 and carboxymethyl cellulose with improved properties. Carbohydrate Polymers, 2020, 233, 115818.	5.1	30
32	Robust and Highly Sensitive Cellulose Nanofiber-Based Humidity Actuators. ACS Applied Materials & Interfaces, 2021, 13, 54417-54427.	4.0	29
33	Highly transparent and colour-tunable composite films with increased quantum dot loading. Journal of Materials Chemistry C, 2014, 2, 10031-10036.	2.7	28
34	Polypyrrole/cellulose nanofiber aerogel as a supercapacitor electrode material. RSC Advances, 2016, 6, 109143-109149.	1.7	27
35	Facile synthesis of magnetic fluorescent nanoparticles: adsorption and selective detection of Hg(ii) in water. Journal of Materials Chemistry C, 2018, 6, 2360-2369.	2.7	27
36	O/N-co-doped hierarchically porous carbon from carboxymethyl cellulose ammonium for high-performance supercapacitors. Journal of Materials Science, 2020, 55, 7417-7431.	1.7	24

#	Article	lF	CITATIONS
37	Transparent, flexible and luminescent composite films by incorporating CuInS2 based quantum dots into a cyanoethyl cellulose matrix. RSC Advances, 2012, 2, 2675.	1.7	23
38	Zr(IV)â€Crosslinked Polyacrylamide/Polyanionic Cellulose Composite Hydrogels with High Strength and Unique Acid Resistance. Journal of Polymer Science, Part B: Polymer Physics, 2019, 57, 981-991.	2.4	23
39	Preparation and properties of environmental-friendly coatings based on carboxymethyl cellulose nitrate ester & modified alkyd. Carbohydrate Polymers, 2016, 137, 92-99.	5.1	22
40	Low-cost and robust production of multi-doped 2D carbon nanosheets for high-performance lithium-ion capacitors. Chemical Engineering Journal, 2019, 370, 508-517.	6.6	22
41	Chitosan and carboxymethyl cellulose-multilayered magnetic fluorescent systems for reversible protein immobilization. Carbohydrate Polymers, 2018, 201, 357-366.	5.1	21
42	Novel functional carboxymethyl cellulose lithium (CMC-Li) for enhanced performance of lithium-ion batteries. RSC Advances, 2014, 4, 24859-24862.	1.7	20
43	Redispersibility of cellulose nanoparticles modified by phenyltrimethoxysilane and its application in stabilizing Pickering emulsions. Journal of Materials Science, 2019, 54, 11713-11725.	1.7	19
44	A physical and chemical double enhancement strategy for 3D printing of cellulose reinforced nanocomposite. Journal of Applied Polymer Science, 2020, 137, 49164.	1.3	19
45	CQDs-Doped Magnetic Electrospun Nanofibers: Fluorescence Self-Display and Adsorption Removal of Mercury(II). ACS Omega, 2018, 3, 4220-4230.	1.6	18
46	Study on novel functional materials carboxymethyl cellulose lithium (CMC-Li) improve high-performance lithium-ion battery. Carbohydrate Polymers, 2014, 110, 121-127.	5.1	17
47	Ultrasound-induced gelation of fluorenyl-9-methoxycarbonyl-l-lysine(fluorenyl-9-methoxycarbonyl)-OH and its dipeptide derivatives showing very low minimum gelation concentrations. Journal of Colloid and Interface Science, 2017, 490, 665-676.	5.0	17
48	Controlled extracellular biosynthesis of ZnS quantum dots by sulphate reduction bacteria in the presence of hydroxypropyl starch as a mediator. Journal of Nanoparticle Research, 2017, 19, 1.	0.8	16
49	Preparation and Characterization of Cellulose/RDX Composite Aerogel Spheres. Propellants, Explosives, Pyrotechnics, 2019, 44, 1613-1620.	1.0	16
50	Threeâ€Ðimensional Printing of Methacrylic Grafted Cellulose Nanocrystalâ€Reinforced Nanocomposites With Improved Properties. Polymer Engineering and Science, 2020, 60, 782-792.	1.5	15
51	Selfâ€doping porous carbon materials synthesis from bioâ€wastes sodium lignosulfonate with high performance for supercapacitors. International Journal of Energy Research, 2022, 46, 2373-2384.	2.2	15
52	Alcogel and aerogel of nitrocellulose formed in nitrocellulose/acetone/ethanol ternary system. International Journal of Polymeric Materials and Polymeric Biomaterials, 2016, 65, 377-383.	1.8	14
53	Dispersion of reduced graphene oxide with montmorillonite for enhancing dielectric properties and thermal stability of cyanoethyl cellulose nanocomposites. Cellulose, 2018, 25, 7143-7152.	2.4	14
54	Nanocellulose-derived carbon nanosphere fibers-based nanohybrid aerogel for high-performance all-solid-state flexible supercapacitors. Journal of Materials Science: Materials in Electronics, 2019, 30, 8585-8594.	1.1	14

#	Article	IF	CITATIONS
55	Eco-Friendly Electrochemical Biosensor based on Sodium Carboxymethyl Cellulose/Reduced Graphene Oxide Composite. Macromolecular Research, 2019, 27, 327-333.	1.0	14
56	Adsorption mechanism of copper ions in aqueous solution by chitosan–carboxymethyl starch composites. Journal of Applied Polymer Science, 2020, 137, 48636.	1.3	14
57	A visible light active, carbon–nitrogen–sulfur co-doped TiO ₂ /g-C ₃ N ₄ Z-scheme heterojunction as an effective photocatalyst to remove dye pollutants. RSC Advances, 2021, 11, 16747-16754.	1.7	14
58	Biomimetic-Inspired One-Step Strategy for Improvement of Interfacial Interactions in Cellulose Nanofibers by Modification of the Surface of Nitramine Explosives. Langmuir, 2021, 37, 8486-8497.	1.6	14
59	Biomass-based magnetic fluorescent nanoparticles: One-step scalable synthesis, application as drug carriers and mechanism study. Carbohydrate Polymers, 2018, 184, 277-287.	5.1	13
60	Short-chain amino acids functionalized cellulose nanofibers composite ultrafiltration membrane with enhanced properties. RSC Advances, 2016, 6, 76336-76343.	1.7	12
61	Methodology of Redispersible Dry Cellulose Nanofibrils Powder Synthesis under Waterless Condition. ACS Sustainable Chemistry and Engineering, 2019, 7, 10690-10698.	3.2	10
62	Preparation of AlNPs/NC Composite Nanofibers by Electrospinning. Integrated Ferroelectrics, 2011, 127, 184-192.	0.3	9
63	Synthesis and gelation capability of mono- and disubstituted cyclo(L-Glu-L-Glu) derivatives with tyramine, tyrosine and phenylalanine. Colloid and Polymer Science, 2017, 295, 1549-1561.	1.0	9
64	Superhydrophobicity of CMCAB Fibrous Mats Produced by Electrospinning. Integrated Ferroelectrics, 2012, 135, 55-61.	0.3	8
65	Multifunctional Biopolymer Nanoparticles for Drug Delivery and Protein Immobilization. Ferroelectrics, 2015, 486, 156-167.	0.3	8
66	Homogeneous tritylation of cellulose in 1-allyl-3-methylimidazolium chloride and subsequent acetylation: The influence of base. Carbohydrate Polymers, 2015, 117, 818-824.	5.1	8
67	Preparation of Well-Defined Propargyl-Terminated Tetra-Arm Poly(N-isopropylacrylamide)s and Their Click Hydrogels Crosslinked with β-cyclodextrin. Polymers, 2016, 8, 93.	2.0	8
68	Fe ₃ O ₄ /Nitrogenâ€Doped Carbon Electrodes from Tailored Thermal Expansion toward Flexible Solidâ€State Asymmetric Supercapacitors. Advanced Materials Interfaces, 2019, 6, 1901250.	1.9	8
69	Poly(N-isopropylacrylamide) hydrogels fabricated via click chemistry: well-defined α,ω-bis propargyl linear poly(N-isopropylacrylamide)s as crosslinkers. RSC Advances, 2014, 4, 51510-51518.	1.7	7
70	Poly(N-isopropylacrylamide) Hydrogels Crosslinked by Small-Molecular Crosslinkers Through Click Chemistry. International Journal of Polymeric Materials and Polymeric Biomaterials, 2015, 64, 104-110.	1.8	7
71	Gelation capability of cysteine-modified cyclo(L-Lys-L-Lys)s dominated by Fmoc and Trt protecting groups. Science China Chemistry, 2016, 59, 293-302.	4.2	7
72	Quantifying the Contribution of the Dispersion Interaction and Hydrogen Bonding to the Anisotropic Elastic Properties of Chitin and Chitosan. Biomacromolecules, 2022, 23, 1633-1642.	2.6	7

Υάνναν Γν

#	Article	IF	CITATIONS
73	Synthesis and gelation capability of Fmoc and Boc mono-substituted cyclo(L-Lys-L-Lys)s. Chemical Research in Chinese Universities, 2016, 32, 484-492.	1.3	6
74	Synergistically Suppressing Lithium Dendrite Growth by Coating Polyâ€ <scp>l</scp> ‣actic Acid on Sustainable Gel Polymer Electrolyte. Energy Technology, 2019, 7, 1800768.	1.8	6
75	Preparation of treelike and rodlike carboxymethylated nanocellulose and their effect on carboxymethyl cellulose films. Journal of Applied Polymer Science, 2021, 138, 50092.	1.3	6
76	Carboxymethylcellulose ammonium-derived nitrogen-doped carbon fiber/molybdenum disulfide hybrids for high-performance supercapacitor electrodes. RSC Advances, 2018, 8, 28944-28952.	1.7	5
77	Boron and nitrogen co-doped carbon nanospheres for supercapacitor electrode with excellent specific capacitance. Nanotechnology, 2022, 33, 185403.	1.3	5
78	Rheological characteristics of nitrate glycerol ether cellulose gel based on phase separation in ternary system. Cellulose, 2014, 21, 4135-4143.	2.4	4
79	Parameterization of classical nonpolarizable force field for hydroxide toward the largeâ€scale molecular dynamics simulation of cellulose in preâ€cooled alkali/urea aqueous solution. Journal of Applied Polymer Science, 2021, 138, 51477.	1.3	4
80	Film Properties, Water Retention, and Growth Promotion of Derivative Carboxymethyl Cellulose Materials from Cotton Straw. Advances in Polymer Technology, 2021, 2021, 1-10.	0.8	4
81	Aerogel of nitrate glycerol ether cellulose based on phase separation in acetone/ethanol mixed solvents system. Journal of Applied Polymer Science, 2015, 132, .	1.3	3
82	Preparation of Diameterâ€Controlled Cellulose Aerogel Spheres via Atomization Method and Their Load Performance. Macromolecular Materials and Engineering, 2020, 305, 2000243.	1.7	3
83	Cellulose acetateâ€based separators prepared by a reversible acetylation process for highâ€performance lithiumâ€ion batteries. Journal of Applied Polymer Science, 2021, 138, 50738.	1.3	3
84	N, P co-doped porous graphene with high electrochemical properties obtained via the laser induction of cellulose nanofibrils. Chinese Journal of Chemical Engineering, 2022, 47, 31-38.	1.7	3
85	Preparation and characterization of RDX based composite energetic materials with a cellulose matrix. Journal of Applied Polymer Science, 2021, 138, 50329.	1.3	3
86	Stiffened and toughened polyacrylamide/polyanionic cellulose physical hydrogels mediated by ferric ions. Colloid and Polymer Science, 2021, 299, 999-1009.	1.0	2
87	Nanocellulose preparation via a dissolution and regeneration process and application to woodâ€plastic composites as toughness enhancement. European Journal of Wood and Wood Products, 2021, 79, 1359-1367.	1.3	2
88	Polymerization of acrylamide inverse microemulsion initiated directly by UV radiation. E-Polymers, 2011, 11, .	1.3	1
89	In situ formation of silver nanoparticles based on dendriticlinear amphiphilic block copolymer micellar templates. E-Polymers, 2010, 10, .	1.3	0
90	Preparation and characterization of xanthated cotton fiber modified cellulose triacetate ultrafiltration membrane. Desalination and Water Treatment, 2016, 57, 10188-10199.	1.0	0

#	Article	IF	CITATIONS
91	Synthesis and rheological properties of amphoteric hydrophobically associating polymer P(AM/AA/AMPS/C ₁₈ DMAAC). , 2021, , .		0