List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/10774250/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Design and Mechanisms of Asymmetric Supercapacitors. Chemical Reviews, 2018, 118, 9233-9280.	23.0	2,379
2	Recent developments in heterogeneous photocatalytic water treatment using visible light-responsive photocatalysts: a review. RSC Advances, 2015, 5, 14610-14630.	1.7	796
3	Synchronous immobilization and conversion of polysulfides on a VO ₂ –VN binary host targeting high sulfur load Li–S batteries. Energy and Environmental Science, 2018, 11, 2620-2630.	15.6	465
4	Controllable Growth and Transfer of Monolayer MoS ₂ on Au Foils and Its Potential Application in Hydrogen Evolution Reaction. ACS Nano, 2014, 8, 10196-10204.	7.3	404
5	Versatile Nâ€Doped MXene Ink for Printed Electrochemical Energy Storage Application. Advanced Energy Materials, 2019, 9, 1901839.	10.2	301
6	Rationalizing Electrocatalysis of Li–S Chemistry by Mediator Design: Progress and Prospects. Advanced Energy Materials, 2020, 10, 1901075.	10.2	296
7	Directly Grown Vertical Graphene Carpets as Janus Separators toward Stabilized Zn Metal Anodes. Advanced Materials, 2020, 32, e2003425.	11.1	278
8	Bridging the Gap between Reality and Ideal in Chemical Vapor Deposition Growth of Graphene. Chemical Reviews, 2018, 118, 9281-9343.	23.0	260
9	Rational design of porous nitrogen-doped Ti3C2 MXene as a multifunctional electrocatalyst for Li–S chemistry. Nano Energy, 2020, 70, 104555.	8.2	194
10	Temperature-triggered chemical switching growth of in-plane and vertically stacked graphene-boron nitride heterostructures. Nature Communications, 2015, 6, 6835.	5.8	191
11	In Situ Assembly of 2D Conductive Vanadium Disulfide with Graphene as a Highâ€Sulfur‣oading Host for Lithium–Sulfur Batteries. Advanced Energy Materials, 2018, 8, 1800201.	10.2	188
12	Flexible perovskite solar cell-driven photo-rechargeable lithium-ion capacitor for self-powered wearable strain sensors. Nano Energy, 2019, 60, 247-256.	8.2	180
13	Direct Chemical Vapor Deposition-Derived Graphene Glasses Targeting Wide Ranged Applications. Nano Letters, 2015, 15, 5846-5854.	4.5	176
14	Enhanced Kinetics Harvested in Heteroatom Dualâ€Doped Graphitic Hollow Architectures toward High Rate Printable Potassiumâ€lon Batteries. Advanced Energy Materials, 2020, 10, 2001161.	10.2	172
15	Chemical vapor deposition growth of large-scale hexagonal boron nitride with controllable orientation. Nano Research, 2015, 8, 3164-3176.	5.8	171
16	Designing 3D Biomorphic Nitrogenâ€Doped MoSe ₂ /Graphene Composites toward Highâ€Performance Potassiumâ€Ion Capacitors. Advanced Functional Materials, 2020, 30, 1903878.	7.8	171
17	Designing three-dimensional acicular sheaf shaped BiVO4/reduced graphene oxide composites for efficient sunlight-driven photocatalytic degradation of dye wastewater. Chemical Engineering Journal, 2014, 249, 102-110.	6.6	165
18	Printable magnesiumÂion quasi-solid-state asymmetric supercapacitors for flexible solar-charging integrated units. Nature Communications, 2019, 10, 4913.	5.8	162

#	Article	IF	CITATIONS
19	Dendritic, Transferable, Strictly Monolayer MoS ₂ Flakes Synthesized on SrTiO ₃ Single Crystals for Efficient Electrocatalytic Applications. ACS Nano, 2014, 8, 8617-8624.	7.3	158
20	A Highly Stretchable Crossâ€Linked Polyacrylamide Hydrogel as an Effective Binder for Silicon and Sulfur Electrodes toward Durable Lithiumâ€Ion Storage. Advanced Functional Materials, 2018, 28, 1705015.	7.8	148
21	Biotemplating Growth of Nepenthes-like N-Doped Graphene as a Bifunctional Polysulfide Scavenger for Li–S Batteries. ACS Nano, 2018, 12, 10240-10250.	7.3	146
22	Defect Engineering for Expediting Li–S Chemistry: Strategies, Mechanisms, and Perspectives. Advanced Energy Materials, 2021, 11, 2100332.	10.2	143
23	Defective VSe ₂ –Graphene Heterostructures Enabling <i>In Situ</i> Electrocatalyst Evolution for Lithium–Sulfur Batteries. ACS Nano, 2020, 14, 11929-11938.	7.3	142
24	3D Printing of a V ₈ C ₇ –VO ₂ Bifunctional Scaffold as an Effective Polysulfide Immobilizer and Lithium Stabilizer for Li–S Batteries. Advanced Materials, 2020, 32, e2005967.	11.1	140
25	Direct Growth of High-Quality Graphene on High-κ Dielectric SrTiO ₃ Substrates. Journal of the American Chemical Society, 2014, 136, 6574-6577.	6.6	133
26	ZnSnO3 hollow nanospheres/reduced graphene oxide nanocomposites as high-performance photocatalysts for degradation of metronidazole. Applied Catalysis B: Environmental, 2014, 144, 386-393.	10.8	132
27	Shape-controlled synthesis of BiVO4 hierarchical structures with unique natural-sunlight-driven photocatalytic activity. Applied Catalysis B: Environmental, 2014, 152-153, 413-424.	10.8	132
28	Enhanced Sulfur Redox and Polysulfide Regulation via Porous VN-Modified Separator for Li–S Batteries. ACS Applied Materials & Interfaces, 2019, 11, 5687-5694.	4.0	126
29	Manipulating Electrocatalytic Li ₂ S Redox via Selective Dualâ€Đefect Engineering for Li–S Batteries. Advanced Materials, 2021, 33, e2103050.	11.1	122
30	Grain Boundary Structures and Electronic Properties of Hexagonal Boron Nitride on Cu(111). Nano Letters, 2015, 15, 5804-5810.	4.5	117
31	Quasi-Freestanding Monolayer Heterostructure of Graphene and Hexagonal Boron Nitride on Ir(111) with a Zigzag Boundary. Nano Letters, 2014, 14, 6342-6347.	4.5	116
32	Growing Uniform Graphene Disks and Films on Molten Glass for Heating Devices and Cell Culture. Advanced Materials, 2015, 27, 7839-7846.	11.1	116
33	Direct low-temperature synthesis of graphene on various glasses by plasma-enhanced chemical vapor deposition for versatile, cost-effective electrodes. Nano Research, 2015, 8, 3496-3504.	5.8	112
34	Recent progress in the tailored growth of two-dimensional hexagonal boron nitride <i>via</i> chemical vapour deposition. Chemical Society Reviews, 2018, 47, 4242-4257.	18.7	107
35	Conductive and Catalytic VTe ₂ @MgO Heterostructure as Effective Polysulfide Promotor for Lithium–Sulfur Batteries. ACS Nano, 2019, 13, 13235-13243.	7.3	107
36	MOF-derived conductive carbon nitrides for separator-modified Li–S batteries and flexible supercapacitors. Journal of Materials Chemistry A, 2020, 8, 1757-1766.	5.2	107

#	Article	IF	CITATIONS
37	In-situ PECVD-enabled graphene-V2O3 hybrid host for lithium–sulfur batteries. Nano Energy, 2018, 53, 432-439.	8.2	105
38	MOF-derived hierarchical CoP nanoflakes anchored on vertically erected graphene scaffolds as self-supported and flexible hosts for lithium–sulfur batteries. Journal of Materials Chemistry A, 2020, 8, 3027-3034.	5.2	105
39	Bio-templated formation of defect-abundant VS2 as a bifunctional material toward high-performance hydrogen evolution reactions and lithiumâ^'sulfur batteries. Journal of Energy Chemistry, 2020, 42, 34-42.	7.1	99
40	Boosting Dualâ€Directional Polysulfide Electrocatalysis via Bimetallic Alloying for Printable Li–S Batteries. Advanced Functional Materials, 2021, 31, 2006798.	7.8	95
41	In situ construction of CoSe2@vertical-oriented graphene arrays as self-supporting electrodes for sodium-ion capacitors and electrocatalytic oxygen evolution. Nano Energy, 2019, 60, 385-393.	8.2	93
42	Vanadium Dioxide-Graphene Composite with Ultrafast Anchoring Behavior of Polysulfides for Lithium–Sulfur Batteries. ACS Applied Materials & Interfaces, 2018, 10, 15733-15741.	4.0	92
43	Fast Growth and Broad Applications of 25â€Inch Uniform Graphene Glass. Advanced Materials, 2017, 29, 1603428.	11.1	90
44	3D Printing of NiCoP/Ti3C2 MXene Architectures for Energy Storage Devices with High Areal and Volumetric Energy Density. Nano-Micro Letters, 2020, 12, 143.	14.4	90
45	Self-healing flexible/stretchable energy storage devices. Materials Today, 2021, 44, 78-104.	8.3	85
46	Scalable Salt-Templated Synthesis of Nitrogen-Doped Graphene Nanosheets toward Printable Energy Storage. ACS Nano, 2019, 13, 7517-7526.	7.3	83
47	Universal <i>in Situ</i> Crafted MO <i>_{<i>x</i>}</i> -MXene Heterostructures as Heavy and Multifunctional Hosts for 3D-Printed Li–S Batteries. ACS Nano, 2020, 14, 16073-16084.	7.3	82
48	Designing N-doped graphene/ReSe2/Ti3C2 MXene heterostructure frameworks as promising anodes for high-rate potassium-ion batteries. Journal of Energy Chemistry, 2021, 53, 155-162.	7.1	82
49	One-pot fabrication of β-Bi2O3@Bi2S3 hierarchical hollow spheres with advanced sunlight photocatalytic RhB oxidation and Cr(VI) reduction activities. Applied Surface Science, 2018, 455, 8-17.	3.1	81
50	"One Stone Two Birds―Design for Dualâ€Functional TiO ₂ â€TiN Heterostructures Enabled Dendriteâ€Free and Kineticsâ€Enhanced Lithium–Sulfur Batteries. Advanced Energy Materials, 2022, 12, .	10.2	80
51	One-pot facile synthesis of Bi 2 S 3 /SnS 2 /Bi 2 O 3 ternary heterojunction as advanced double Z-scheme photocatalytic system for efficient dye removal under sunlight irradiation. Applied Surface Science, 2017, 420, 233-242.	3.1	78
52	Elevated polysulfide regulation by an ultralight all-CVD-built ReS2@N-Doped graphene heterostructure interlayer for lithium–sulfur batteries. Nano Energy, 2019, 66, 104190.	8.2	77
53	A Dual-Functional Fibrous Skeleton Implanted with Single-Atomic Co–N _{<i>x</i>} Dispersions for Longevous Li–S Full Batteries. ACS Nano, 2021, 15, 14105-14115.	7.3	72
54	A Robust Ternary Heterostructured Electrocatalyst with Conformal Graphene Chainmail for Expediting Biâ€Directional Sulfur Redox in Li–S Batteries. Advanced Functional Materials, 2021, 31, 2100586.	7.8	71

#	Article	IF	CITATIONS
55	Seed-Assisted Growth of Single-Crystalline Patterned Graphene Domains on Hexagonal Boron Nitride by Chemical Vapor Deposition. Nano Letters, 2016, 16, 6109-6116.	4.5	69
56	Direct Chemical-Vapor-Deposition-Fabricated, Large-Scale Graphene Glass with High Carrier Mobility and Uniformity for Touch Panel Applications. ACS Nano, 2016, 10, 11136-11144.	7.3	69
57	Rapid Growth of Large Singleâ€Crystalline Graphene via Second Passivation and Multistage Carbon Supply. Advanced Materials, 2016, 28, 4671-4677.	11.1	69
58	Selfâ€Assembled Binary Organic Granules with Multiple Lithium Uptake Mechanisms toward Highâ€Energy Flexible Lithiumâ€ion Hybrid Supercapacitors. Advanced Energy Materials, 2018, 8, 1802273.	10.2	68
59	All VN-graphene architecture derived self-powered wearable sensors for ultrasensitive health monitoring. Nano Research, 2019, 12, 331-338.	5.8	67
60	PECVD-derived graphene nanowall/lithium composite anodes towards highly stable lithium metal batteries. Energy Storage Materials, 2019, 22, 29-39.	9.5	65
61	Switching Vertical to Horizontal Graphene Growth Using Faraday Cageâ€Assisted PECVD Approach for Highâ€Performance Transparent Heating Device. Advanced Materials, 2018, 30, 1704839.	11.1	62
62	Self-Supported Nonprecious MXene/Ni ₃ S ₂ Electrocatalysts for Efficient Hydrogen Generation in Alkaline Media. ACS Applied Energy Materials, 2019, 2, 6931-6938.	2.5	62
63	Temperatureâ€Mediated Engineering of Graphdiyne Framework Enabling Highâ€Performance Potassium Storage. Advanced Functional Materials, 2020, 30, 2003039.	7.8	62
64	Facile synthesis of novel ZnO/RGO hybrid nanocomposites with enhanced catalytic performance for visible-light-driven photodegradation of metronidazole. Materials Chemistry and Physics, 2014, 145, 357-365.	2.0	60
65	Morphological Engineering of CVDâ€Grown Transition Metal Dichalcogenides for Efficient Electrochemical Hydrogen Evolution. Advanced Materials, 2016, 28, 6207-6212.	11.1	58
66	Graphdiyne/Graphene/Graphdiyne Sandwiched Carbonaceous Anode for Potassium-Ion Batteries. ACS Nano, 2022, 16, 3163-3172.	7.3	56
67	Graphene Glass from Direct CVD Routes: Production and Applications. Advanced Materials, 2016, 28, 10333-10339.	11.1	52
68	Niobium pentoxide based materials for high rate rechargeable electrochemical energy storage. Materials Horizons, 2021, 8, 1130-1152.	6.4	51
69	Electrocatalyst Modulation toward Bidirectional Sulfur Redox in Li–S Batteries: From Strategic Probing to Mechanistic Understanding. Advanced Energy Materials, 2022, 12, .	10.2	49
70	Confining TiO2 Nanotubes in PECVD-Enabled Graphene Capsules Toward Ultrafast K-Ion Storage: In Situ TEM/XRD Study and DFT Analysis. Nano-Micro Letters, 2020, 12, 123.	14.4	48
71	Direct Chemical Vapor Deposition Growth of Graphene on Insulating Substrates. ChemNanoMat, 2016, 2, 9-18.	1.5	46
72	Direct insight into sulfiphilicity-lithiophilicity design of bifunctional heteroatom-doped graphene mediator toward durable Li-S batteries. Journal of Energy Chemistry, 2022, 66, 474-482.	7.1	44

#	Article	lF	CITATIONS
73	Expediting the electrochemical kinetics of 3D-printed sulfur cathodes for Li–S batteries with high rate capability and areal capacity. Nano Energy, 2020, 75, 104970.	8.2	44
74	Biotemplated Synthesis of Transition Metal Nitride Architectures for Flexible Printed Circuits and Wearable Energy Storages. Advanced Functional Materials, 2018, 28, 1805510.	7.8	43
75	Direct growth of wafer-scale highly oriented graphene on sapphire. Science Advances, 2021, 7, eabk0115.	4.7	43
76	Altering Local Chemistry of Singleâ€Atom Coordination Boosts Bidirectional Polysulfide Conversion of Li–S Batteries. Advanced Functional Materials, 2022, 32, .	7.8	43
77	In situ separator modification via CVD-derived N-doped carbon for highly reversible Zn metal anodes. Nano Research, 2022, 15, 9785-9791.	5.8	36
78	Reduced graphene oxide on a dumbbell-shaped BiVO4 photocatalyst for an augmented natural sunlight photocatalytic activity. Journal of Molecular Catalysis A, 2014, 387, 138-146.	4.8	35
79	Tuning Chemical Potential Difference across Alternately Doped Graphene p–n Junctions for High-Efficiency Photodetection. Nano Letters, 2016, 16, 4094-4101.	4.5	34
80	Direct synthesis of flexible graphene glass with macroscopic uniformity enabled by copper-foam-assisted PECVD. Journal of Materials Chemistry A, 2019, 7, 4813-4822.	5.2	34
81	Precise synthesis of N-doped graphitic carbon via chemical vapor deposition to unravel the dopant functions on potassium storage toward practical K-ion batteries. Nano Research, 2021, 14, 1413-1420.	5.8	34
82	Fast and uniform growth of graphene glass using confined-flow chemical vapor deposition and its unique applications. Nano Research, 2016, 9, 3048-3055.	5.8	32
83	Deciphering the defect <scp>microâ€environment</scp> of graphene for highly efficient Li–S redox reactions. EcoMat, 2022, 4, e12182.	6.8	31
84	Controlled synthesis of uniform BiVO4 microcolumns and advanced visible-light-driven photocatalytic activity for the degradation of metronidazole-contained wastewater. Environmental Science and Pollution Research, 2014, 21, 2837-2845.	2.7	30
85	Narrowâ€Gap Quantum Wires Arising from the Edges of Monolayer MoS ₂ Synthesized on Graphene. Advanced Materials Interfaces, 2016, 3, 1600332.	1.9	30
86	Regulating Interfacial Ion Migration via Wool Keratin Mediated Biogel Electrolyte toward Robust Flexible Zn″on Batteries. Small, 2022, 18, e2107163.	5.2	30
87	Accelerated Li–S chemistry at a cooperative interface built <i>in situ</i> . Journal of Materials Chemistry A, 2019, 7, 20750-20759.	5.2	28
88	Superclean Growth of Graphene Using a Coldâ€Wall Chemical Vapor Deposition Approach. Angewandte Chemie - International Edition, 2020, 59, 17214-17218.	7.2	28
89	Ultrasonic-assisted rational design of uniform rhombus-shaped ZnMoO _x on graphene for advanced sunlight-driven photocatalysts, functional supercapacitor electrodes, and antibacterial platforms. RSC Advances, 2014, 4, 64994-65003.	1.7	27
90	Substrate Developments for the Chemical Vapor Deposition Synthesis of Graphene. Advanced Materials Interfaces, 2020, 7, 1902024.	1.9	27

#	Article	IF	CITATIONS
91	Bimetallic Selenide Decorated Nanoreactor Synergizing Confinement and Electrocatalysis of Se Species for 3D-Printed High-Loading K–Se Batteries. ACS Nano, 2022, 16, 3373-3382.	7.3	25
92	Graphene/ <i>h</i> â€BN Heterostructures: Recent Advances in Controllable Preparation and Functional Applications. Advanced Energy Materials, 2016, 6, 1600541.	10.2	24
93	Universal interface and defect engineering dual-strategy for graphene-oxide heterostructures toward promoted Li–S chemistry. Chemical Engineering Journal, 2021, 418, 129407.	6.6	24
94	Graphene-driving strain engineering to enable strain-free epitaxy of AlN film for deep ultraviolet light-emitting diode. Light: Science and Applications, 2022, 11, 88.	7.7	24
95	Recent advances in the template-confined synthesis of two-dimensional materials for aqueous energy storage devices. Nanoscale Advances, 2020, 2, 2220-2233.	2.2	23
96	Batch synthesis of transfer-free graphene with wafer-scale uniformity. Nano Research, 2020, 13, 1564-1570.	5.8	22
97	Oxygen-assisted direct growth of large-domain and high-quality graphene on glass targeting advanced optical filter applications. Nano Research, 2021, 14, 260-267.	5.8	20
98	Metallic Transition Metal Dichalcogenides of Group VIB: Preparation, Stabilization, and Energy Applications. Small, 2021, 17, e2005573.	5.2	19
99	Controlled growth of Ni nanocrystals on SrTiO3 and their application in the catalytic synthesis of carbon nanotubes. Chemical Communications, 2013, 49, 3748.	2.2	18
100	Direct Growth of 5 in. Uniform Hexagonal Boron Nitride on Glass for Highâ€Performance Deepâ€Ultraviolet Lightâ€Emitting Diodes. Advanced Materials Interfaces, 2018, 5, 1800662.	1.9	18
101	Harmonized edge/graphiticâ€nitrogen doped carbon nanopolyhedron@nanosheet composite via saltâ€confined strategy for advanced <scp>K</scp> â€ion hybrid capacitors. InformaÄnÅ-MateriÃily, 2021, 3, 891-903.	8.5	18
102	Highâ€Quality Monolayer Graphene Synthesis on Pd Foils via the Suppression of Multilayer Growth at Grain Boundaries. Small, 2014, 10, 4003-4011.	5.2	16
103	Chemical Vapor Deposition Synthesis of Graphene over Sapphire Substrates. ChemNanoMat, 2021, 7, 515-525.	1.5	16
104	Architecturing aligned orthorhombic Nb2O5 nanowires toward sodium-ion hybrid capacitor and Lithium–Sulfur battery applications. FlatChem, 2021, 27, 100236.	2.8	12
105	Direct ink writing of conductive materials for emerging energy storage systems. Nano Research, 2022, 15, 6091-6111.	5.8	11
106	Homologous Nitrogenâ€Doped Hierarchical Carbon Architectures Enabling Compatible Anode and Cathode for Potassiumâ€ion Hybrid Capacitors. Small, 2022, 18, e2107139.	5.2	10
107	Promise and reality of practical potassiumâ€based energy storage systems. Engineering Reports, 2020, 2, e12328.	0.9	5
108	Metal-free chemical vapor deposition growth of graphitic tubular structures on engineered perovskite oxide substrates. Carbon, 2016, 99, 591-598.	5.4	4

#	Article	IF	CITATIONS
109	Superclean Growth of Graphene Using a Coldâ€Wall Chemical Vapor Deposition Approach. Angewandte Chemie, 2020, 132, 17367-17371.	1.6	4