List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/10773126/publications.pdf

Version: 2024-02-01

		117453	315357
38	10,066	34	38
papers	citations	h-index	g-index
	2.2	2.2	10715
38	38	38	13715
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	General synthesis and definitive structural identification of MN4C4 single-atom catalysts with tunable electrocatalytic activities. Nature Catalysis, 2018, 1, 63-72.	16.1	1,476
2	Atomic cobalt on nitrogen-doped graphene for hydrogen generation. Nature Communications, 2015, 6, 8668.	5.8	1,356
3	Three-dimensional holey-graphene/niobia composite architectures for ultrahigh-rate energy storage. Science, 2017, 356, 599-604.	6.0	1,229
4	Edgeâ€Oriented MoS ₂ Nanoporous Films as Flexible Electrodes for Hydrogen Evolution Reactions and Supercapacitor Devices. Advanced Materials, 2014, 26, 8163-8168.	11.1	552
5	Single-atom tailoring of platinum nanocatalysts for high-performance multifunctional electrocatalysis. Nature Catalysis, 2019, 2, 495-503.	16.1	464
6	Porous Cobaltâ€Based Thin Film as a Bifunctional Catalyst for Hydrogen Generation and Oxygen Generation. Advanced Materials, 2015, 27, 3175-3180.	11.1	460
7	Single atom electrocatalysts supported on graphene or graphene-like carbons. Chemical Society Reviews, 2019, 48, 5207-5241.	18.7	441
8	Highâ€Performance Pseudocapacitive Microsupercapacitors from Laserâ€Induced Graphene. Advanced Materials, 2016, 28, 838-845.	11.1	439
9	Single-Atomic Ruthenium Catalytic Sites on Nitrogen-Doped Graphene for Oxygen Reduction Reaction in Acidic Medium. ACS Nano, 2017, 11, 6930-6941.	7. 3	435
10	Double-negative-index ceramic aerogels for thermal superinsulation. Science, 2019, 363, 723-727.	6.0	429
11	Efficient Electrocatalytic Oxygen Evolution on Amorphous Nickel–Cobalt Binary Oxide Nanoporous Layers. ACS Nano, 2014, 8, 9518-9523.	7. 3	359
12	Microwaveâ€Assisted Rapid Synthesis of Grapheneâ€Supported Single Atomic Metals. Advanced Materials, 2018, 30, e1802146.	11.1	244
13	Cobalt Nanoparticles Embedded in Nitrogen-Doped Carbon for the Hydrogen Evolution Reaction. ACS Applied Materials & Samp; Interfaces, 2015, 7, 8083-8087.	4.0	180
14	Nanocomposite of Polyaniline Nanorods Grown on Graphene Nanoribbons for Highly Capacitive Pseudocapacitors. ACS Applied Materials & Samp; Interfaces, 2013, 5, 6622-6627.	4.0	171
15	Hydrothermally Formed Three-Dimensional Nanoporous Ni(OH) ₂ Thin-Film Supercapacitors. ACS Nano, 2014, 8, 9622-9628.	7.3	148
16	Enhanced Cycling Stability of Lithiumâ€lon Batteries Using Grapheneâ€Wrapped Fe ₃ O ₄ â€Graphene Nanoribbons as Anode Materials. Advanced Energy Materials, 2015, 5, 1500171.	10.2	133
17	Flexible Nanoporous WO _{3–<i>x</i>} Nonvolatile Memory Device. ACS Nano, 2016, 10, 7598-7603.	7.3	114
18	Vertically Aligned WS ₂ Nanosheets for Water Splitting. Advanced Functional Materials, 2015, 25, 6199-6204.	7.8	108

#	Article	IF	Citations
19	Asphalt-Derived High Surface Area Activated Porous Carbons for Carbon Dioxide Capture. ACS Applied Materials & Samp; Interfaces, 2015, 7, 1376-1382.	4.0	108
20	Nitrogen-doped carbonized cotton for highly flexible supercapacitors. Carbon, 2016, 105, 260-267.	5.4	108
21	Efficient Water-Splitting Electrodes Based on Laser-Induced Graphene. ACS Applied Materials & Samp; Interfaces, 2017, 9, 26840-26847.	4.0	103
22	Lowâ€Coordinated CoNC on Oxygenated Graphene for Efficient Electrocatalytic H ₂ O ₂ Production. Advanced Functional Materials, 2022, 32, 2106886.	7.8	97
23	Bacteria-Derived Biological Carbon Building Robust Li–S Batteries. Nano Letters, 2019, 19, 4384-4390.	4.5	95
24	Biochar as a renewable source for high-performance CO2 sorbent. Carbon, 2016, 107, 344-351.	5.4	94
25	Constructing a Graphene-Encapsulated Amorphous/Crystalline Heterophase NiFe Alloy by Microwave Thermal Shock for Boosting the Oxygen Evolution Reaction. ACS Catalysis, 2021, 11, 12284-12292.	5.5	93
26	Edge-hosted Fe-N3 sites on a multiscale porous carbon framework combining high intrinsic activity with efficient mass transport for oxygen reduction. Chem Catalysis, 2021, 1, 1291-1307.	2.9	86
27	Enhanced Cycling Stability of Lithium Sulfur Batteries Using Sulfur–Polyaniline–Graphene Nanoribbon Composite Cathodes. ACS Applied Materials & Interfaces, 2014, 6, 15033-15039.	4.0	80
28	Design of Aligned Porous Carbon Films with Singleâ€Atom Co–N–C Sites for Highâ€Currentâ€Density Hydrogen Generation. Advanced Materials, 2021, 33, e2103533.	11.1	76
29	A Silicon Monoxide Lithium-Ion Battery Anode with Ultrahigh Areal Capacity. Nano-Micro Letters, 2022, 14, 50.	14.4	59
30	Three-Dimensional Thin Film for Lithium-Ion Batteries and Supercapacitors. ACS Nano, 2014, 8, 7279-7287.	7.3	50
31	Electronic Structure Regulation of Singleâ€Atom Catalysts for Electrochemical Oxygen Reduction to H ₂ O ₂ . Small, 2022, 18, e2103824.	5 . 2	49
32	LiFePO4 nanoparticles encapsulated in graphene nanoshells for high-performance lithium-ion battery cathodes. Chemical Communications, 2014, 50, 7117.	2.2	47
33	lodine-Doping-Induced Electronic Structure Tuning of Atomic Cobalt for Enhanced Hydrogen Evolution Electrocatalysis. ACS Nano, 2021, 15, 18125-18134.	7.3	40
34	Carbon-Free Electrocatalyst for Oxygen Reduction and Oxygen Evolution Reactions. ACS Applied Materials & Samp; Interfaces, 2015, 7, 20607-20611.	4.0	39
35	Engineering the Morphology and Microenvironment of a Grapheneâ€Supported Coâ€N Singleâ€Atom Electrocatalyst for Enhanced Hydrogen Evolution. Small, 2022, 18, e2201139.	5. 2	36
36	Germanium on seamless graphene carbon nanotube hybrids for lithium ion anodes. Carbon, 2017, 123, 433-439.	5.4	35

#	Article	IF	CITATIONS
37	Ultrafast Joule heating synthesis of hierarchically porous graphene-based Co-N-C single-atom monoliths. Nano Research, 2022, 15, 3913-3919.	5.8	20
38	Ultrafast synthetic strategies under extreme heating conditions toward single-atom catalysts. International Journal of Extreme Manufacturing, 2022, 4, 032003.	6.3	13