
Mohand O Saed

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1077274/publications.pdf Version: 2024-02-01

MOHAND O SAED

#	Article	lF	CITATIONS
1	Tailorable and programmable liquid-crystalline elastomers using a two-stage thiol–acrylate reaction. RSC Advances, 2015, 5, 18997-19001.	1.7	342
2	Molecularlyâ€Engineered, 4Dâ€Printed Liquid Crystal Elastomer Actuators. Advanced Functional Materials, 2019, 29, 1806412.	7.8	234
3	High strain actuation liquid crystal elastomers via modulation of mesophase structure. Soft Matter, 2017, 13, 7537-7547.	1.2	106
4	Thiolâ€acrylate mainâ€chain liquidâ€crystalline elastomers with tunable thermomechanical properties and actuation strain. Journal of Polymer Science, Part B: Polymer Physics, 2017, 55, 157-168.	2.4	106
5	Liquid Crystalline Vitrimers with Full or Partial Boronicâ€Ester Bond Exchange. Advanced Functional Materials, 2020, 30, 1906458.	7.8	99
6	Exchangeable Liquid Crystalline Elastomers and Their Applications. Chemical Reviews, 2022, 122, 4927-4945.	23.0	91
7	Siloxane crosslinks with dynamic bond exchange enable shape programming in liquid-crystalline elastomers. Scientific Reports, 2020, 10, 6609.	1.6	69
8	Scalable upcycling of thermoplastic polyolefins into vitrimers through transesterification. Journal of Materials Chemistry A, 2020, 8, 24137-24147.	5.2	68
9	Liquid-crystal order during synthesis affects main-chain liquid-crystal elastomer behavior. Soft Matter, 2017, 13, 7013-7025.	1.2	59
10	Elasticity and Relaxation in Full and Partial Vitrimer Networks. Macromolecules, 2019, 52, 7423-7429.	2.2	52
11	Viscoelasticity of the polydomain-monodomain transition in main-chain liquid crystal elastomers. Polymer, 2016, 98, 165-171.	1.8	49
12	Enhanced Dynamic Adhesion in Nematic Liquid Crystal Elastomers. Advanced Materials, 2019, 31, e1902642.	11.1	48
13	Rates of transesterification in epoxy–thiol vitrimers. Soft Matter, 2020, 16, 5195-5202.	1.2	42
14	Responsive, 3D Electronics Enabled by Liquid Crystal Elastomer Substrates. ACS Applied Materials & Interfaces, 2019, 11, 19506-19513.	4.0	38
15	Synthesis of Programmable Main-chain Liquid-crystalline Elastomers Using a Two-stage Thiol-acrylate Reaction. Journal of Visualized Experiments, 2016, , e53546.	0.2	36
16	Impact damping and vibration attenuation in nematic liquid crystal elastomers. Nature Communications, 2021, 12, 6676.	5.8	36
17	Dynamic Semicrystalline Networks of Polypropylene with Thiol-Anhydride Exchangeable Crosslinks. ACS Applied Materials & Interfaces, 2021, 13, 42044-42051.	4.0	31
18	Transesterification in Epoxy–Thiol Exchangeable Liquid Crystalline Elastomers. Macromolecules, 2020, 53, 8642-8649.	2.2	30

Mohand O Saed

#	Article	IF	CITATIONS
19	Internal constraints and arrested relaxation in main-chain nematic elastomers. Nature Communications, 2021, 12, 787.	5.8	30
20	Catalytic Control of Plastic Flow in Siloxane-Based Liquid Crystalline Elastomer Networks. ACS Macro Letters, 2020, 9, 749-755.	2.3	28
21	Light-Driven Dynamic Adhesion on Photosensitized Nematic Liquid Crystalline Elastomers. ACS Applied Materials & Interfaces, 2020, 12, 31992-31997.	4.0	28
22	Photo-CuAAC Induced Wrinkle Formation in a Thiol–Acrylate Elastomer via Sequential Click Reactions. Chemistry of Materials, 2014, 26, 5303-5309.	3.2	26
23	Liquid Crystal Elastomer-Based Microelectrode Array for In Vitro Neuronal Recordings. Micromachines, 2018, 9, 416.	1.4	24
24	Dynamic Manipulation of Friction in Smart Textile Composites of Liquidâ€Crystal Elastomers. Advanced Materials Interfaces, 2020, 7, 1901996.	1.9	22
25	Continuous spinning aligned liquid crystal elastomer fibers with a 3D printer setup. Soft Matter, 2021, 17, 5436-5443.	1.2	19
26	Highâ€strength poly(<i>para</i> â€phenylene) as an orthopedic biomaterial. Journal of Biomedical Materials Research - Part A, 2014, 102, 3122-3129.	2.1	18
27	Heliotracking Device using Liquid Crystalline Elastomer Actuators. Advanced Materials Technologies, 2021, 6, 2100681.	3.0	17
28	Dynamic Pressure Sensitive Adhesion in Nematic Phase of Liquid Crystal Elastomers. Advanced Functional Materials, 2022, 32, .	7.8	15
29	The effect of alignment on the rate-dependent behavior of a main-chain liquid crystal elastomer. Soft Matter, 2020, 16, 8782-8798.	1.2	14
30	Fully recoverable rigid shape memory foam based on copper-catalyzed azide–alkyne cycloaddition (CuAAC) using a salt leaching technique. Polymer Chemistry, 2018, 9, 121-130.	1.9	12
31	A Copolymer-in-Oil Tissue-Mimicking Material With Tuneable Acoustic and Optical Characteristics for Photoacoustic Imaging Phantoms. IEEE Transactions on Medical Imaging, 2021, 40, 3593-3603.	5.4	10
32	Thiol–acrylate side-chain liquid crystal elastomers. Soft Matter, 2022, 18, 4803-4809.	1.2	2