
## List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/10772573/publications.pdf Version: 2024-02-01



| #  | Article                                                                                                                                                                                 | IF   | CITATIONS |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 1  | A Novel Coronavirus from Patients with Pneumonia in China, 2019. New England Journal of Medicine, 2020, 382, 727-733.                                                                   | 13.9 | 21,542    |
| 2  | Genomic characterisation and epidemiology of 2019 novel coronavirus: implications for virus origins and receptor binding. Lancet, The, 2020, 395, 565-574.                              | 6.3  | 9,430     |
| 3  | Epidemiology, Genetic Recombination, and Pathogenesis of Coronaviruses. Trends in Microbiology, 2016, 24, 490-502.                                                                      | 3.5  | 2,243     |
| 4  | Origin and diversity of novel avian influenza A H7N9 viruses causing human infection: phylogenetic, structural, and coalescent analyses. Lancet, The, 2013, 381, 1926-1932.             | 6.3  | 516       |
| 5  | A Novel Bat Coronavirus Closely Related to SARS-CoV-2 Contains Natural Insertions at the S1/S2<br>Cleavage Site of the Spike Protein. Current Biology, 2020, 30, 2196-2203.e3.          | 1.8  | 480       |
| 6  | A single mutation in the prM protein of Zika virus contributes to fetal microcephaly. Science, 2017, 358, 933-936.                                                                      | 6.0  | 399       |
| 7  | Identification of novel bat coronaviruses sheds light on the evolutionary origins of SARS-CoV-2 and related viruses. Cell, 2021, 184, 4380-4391.e14.                                    | 13.5 | 261       |
| 8  | Genesis, Evolution and Prevalence of H5N6 Avian Influenza Viruses in China. Cell Host and Microbe,<br>2016, 20, 810-821.                                                                | 5.1  | 257       |
| 9  | The emergence, genomic diversity and global spread of SARS-CoV-2. Nature, 2021, 600, 408-418.                                                                                           | 13.7 | 249       |
| 10 | Dynamic reassortments and genetic heterogeneity of the human-infecting influenza A (H7N9) virus.<br>Nature Communications, 2014, 5, 3142.                                               | 5.8  | 145       |
| 11 | Human infections with recently-emerging highly pathogenic H7N9 avian influenza virus in China.<br>Journal of Infection, 2017, 75, 71-75.                                                | 1.7  | 143       |
| 12 | Broad host range of SARS-CoV-2 and the molecular basis for SARS-CoV-2 binding to cat ACE2. Cell<br>Discovery, 2020, 6, 68.                                                              | 3.1  | 132       |
| 13 | Poultry carrying H9N2 act as incubators for novel human avian influenza viruses. Lancet, The, 2014, 383, 869.                                                                           | 6.3  | 113       |
| 14 | Emergence and Adaptation of a Novel Highly Pathogenic H7N9 Influenza Virus in Birds and Humans<br>from a 2013 Human-Infecting Low-Pathogenic Ancestor. Journal of Virology, 2018, 92, . | 1.5  | 99        |
| 15 | Dominant subtype switch in avian influenza viruses during 2016–2019 in China. Nature<br>Communications, 2020, 11, 5909.                                                                 | 5.8  | 93        |
| 16 | New Threats from H7N9 Influenza Virus: Spread and Evolution of High- and Low-Pathogenicity Variants<br>with High Genomic Diversity in Wave Five. Journal of Virology, 2018, 92, .       | 1.5  | 92        |
| 17 | Hepatitis B virus subgenotyping: History, effects of recombination, misclassifications, and corrections. Infection, Genetics and Evolution, 2013, 16, 355-361.                          | 1.0  | 89        |
| 18 | Two novel reassortants of avian influenza A (H5N6) virus in China. Journal of General Virology, 2015,<br>96, 975-981.                                                                   | 1.3  | 89        |

| #  | Article                                                                                                                                                                                                                 | IF  | CITATIONS |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 19 | Origin and molecular characterization of the human-infecting H6N1 influenza virus in Taiwan. Protein and Cell, 2013, 4, 846-853.                                                                                        | 4.8 | 86        |
| 20 | Origin and Possible Genetic Recombination of the Middle East Respiratory Syndrome Coronavirus<br>from the First Imported Case in China: Phylogenetics and Coalescence Analysis. MBio, 2015, 6, e01280-15.               | 1.8 | 86        |
| 21 | Highly Pathogenic Avian Influenza A(H5N8) Virus in Wild Migratory Birds, Qinghai Lake, China.<br>Emerging Infectious Diseases, 2017, 23, 637-641.                                                                       | 2.0 | 82        |
| 22 | Emerging H5N8 avian influenza viruses. Science, 2021, 372, 784-786.                                                                                                                                                     | 6.0 | 64        |
| 23 | Novel avian influenza A (H5N6) viruses isolated in migratory waterfowl before the first human case reported in China, 2014. Scientific Reports, 2016, 6, 29888.                                                         | 1.6 | 57        |
| 24 | Clinical and Immunological Characteristics of Human Infections With H5N6 Avian Influenza Virus.<br>Clinical Infectious Diseases, 2019, 68, 1100-1109.                                                                   | 2.9 | 56        |
| 25 | Global and Local Persistence of Influenza A(H5N1) Virus. Emerging Infectious Diseases, 2014, 20,<br>1287-1295.                                                                                                          | 2.0 | 49        |
| 26 | Highly diversified Zika viruses imported to China, 2016. Protein and Cell, 2016, 7, 461-464.                                                                                                                            | 4.8 | 48        |
| 27 | One-Year Sustained Cellular and Humoral Immunities in Coronavirus Disease 2019 (COVID-19)<br>Convalescents. Clinical Infectious Diseases, 2022, 75, e1072-e1081.                                                        | 2.9 | 48        |
| 28 | Highly Pathogenic Avian Influenza A(H5N1) Virus Struck Migratory Birds in China in 2015. Scientific<br>Reports, 2015, 5, 12986.                                                                                         | 1.6 | 47        |
| 29 | ldentification of novel inter-genotypic recombinants of human hepatitis B viruses by large-scale<br>phylogenetic analysis. Virology, 2012, 427, 51-59.                                                                  | 1.1 | 44        |
| 30 | Assessing the role of live poultry trade in community-structured transmission of avian influenza in<br>China. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117,<br>5949-5954. | 3.3 | 43        |
| 31 | The first imported case of Rift Valley fever in China reveals a genetic reassortment of different viral lineages. Emerging Microbes and Infections, 2017, 6, 1-7.                                                       | 3.0 | 40        |
| 32 | Highly pathogenic avian influenza H5N1 Clade 2.3.2.1c virus in migratory birds, 2014–2015. Virologica<br>Sinica, 2016, 31, 300-305.                                                                                     | 1.2 | 39        |
| 33 | A Complete Analysis of HA and NA Genes of Influenza A Viruses. PLoS ONE, 2010, 5, e14454.                                                                                                                               | 1.1 | 38        |
| 34 | Long noncoding RNAs: Novel regulators of virusâ€host interactions. Reviews in Medical Virology, 2019,<br>29, e2046.                                                                                                     | 3.9 | 38        |
| 35 | Bioinformatics resources for SARS-CoV-2 discovery and surveillance. Briefings in Bioinformatics, 2021, 22, 631-641.                                                                                                     | 3.2 | 38        |
| 36 | Ecological dynamics of influenza A viruses: cross-species transmission and global migration.<br>Scientific Reports, 2016, 6, 36839.                                                                                     | 1.6 | 36        |

| #  | Article                                                                                                                                                                                                | IF  | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 37 | Epidemiological characteristics of hand, foot, and mouth disease in Shandong, China, 2009–2016.<br>Scientific Reports, 2017, 7, 8900.                                                                  | 1.6 | 35        |
| 38 | A Neonatal Murine Model of Coxsackievirus A6 Infection for Evaluation of Antiviral and Vaccine<br>Efficacy. Journal of Virology, 2017, 91, .                                                           | 1.5 | 32        |
| 39 | Avian Influenza A Viruses among Occupationally Exposed Populations, China, 2014–2016. Emerging<br>Infectious Diseases, 2019, 25, 2215-2225.                                                            | 2.0 | 32        |
| 40 | Phylogenetics of varied subtypes of avian influenza viruses in China: potential threat to humans.<br>Protein and Cell, 2014, 5, 253-257.                                                               | 4.8 | 31        |
| 41 | Protective Efficacies of Formaldehyde-Inactivated Whole-Virus Vaccine and Antivirals in a Murine<br>Model of Coxsackievirus A10 Infection. Journal of Virology, 2017, 91, .                            | 1.5 | 30        |
| 42 | The Asian Lineage of Zika Virus: Transmission and Evolution in Asia and the Americas. Virologica Sinica, 2019, 34, 1-8.                                                                                | 1.2 | 30        |
| 43 | Emerging HxNy Influenza A Viruses. Cold Spring Harbor Perspectives in Medicine, 2022, 12, a038406.                                                                                                     | 2.9 | 30        |
| 44 | Increasing genetic diversity of Zika virus in the Latin American outbreak. Emerging Microbes and<br>Infections, 2016, 5, 1-3.                                                                          | 3.0 | 28        |
| 45 | Uncovering two phases of early intercontinental COVID-19 transmission dynamics. Journal of Travel Medicine, 2020, 27, .                                                                                | 1.4 | 28        |
| 46 | Prospective of Genomics in Revealing Transmission, Reassortment and Evolution of Wildlife-Borne<br>Avian Influenza A (H5N1) Viruses. Current Genomics, 2011, 12, 466-474.                              | 0.7 | 28        |
| 47 | Recombination in Hepatitis C Virus: Identification of Four Novel Naturally Occurring Inter-Subtype Recombinants. PLoS ONE, 2012, 7, e41997.                                                            | 1.1 | 27        |
| 48 | Subgenotyping of Genotype C Hepatitis B Virus: Correcting Misclassifications and Identifying a Novel<br>Subgenotype. PLoS ONE, 2012, 7, e47271.                                                        | 1.1 | 26        |
| 49 | Tamdy Virus in <i>Ixodid</i> Ticks Infesting Bactrian Camels, Xinjiang, China, 2018. Emerging Infectious<br>Diseases, 2019, 25, 2136-2138.                                                             | 2.0 | 21        |
| 50 | Subgenotype reclassification of genotype B hepatitis B virus. BMC Gastroenterology, 2012, 12, 116.                                                                                                     | 0.8 | 20        |
| 51 | Co-circulation and persistence of multiple A/H3N2 influenza variants in China. Emerging Microbes and Infections, 2019, 8, 1157-1167.                                                                   | 3.0 | 20        |
| 52 | Continued reassortment of avian H6 influenza viruses from Southern China, 2014–2016.<br>Transboundary and Emerging Diseases, 2019, 66, 592-598.                                                        | 1.3 | 19        |
| 53 | High genetic diversity and frequent genetic reassortment of avian influenza A(H9N2) viruses along the<br>East Asian–Australian migratory flyway. Infection, Genetics and Evolution, 2016, 39, 325-329. | 1.0 | 18        |
| 54 | Novel sub-lineages, recombinants and reassortants of severe fever with thrombocytopenia syndrome<br>virus. Ticks and Tick-borne Diseases, 2017, 8, 385-390.                                            | 1.1 | 18        |

| #  | Article                                                                                                                                                                                                                     | IF  | CITATIONS |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 55 | Continuous reassortments with local chicken H9N2 virus underlie the human-infecting influenza A<br>(H7N9) virus in the new influenza season, Guangdong, China. Protein and Cell, 2014, 5, 878-882.                          | 4.8 | 17        |
| 56 | Re-emergence of H5N8 highly pathogenic avian influenza virus in wild birds, China. Emerging Microbes and Infections, 2021, 10, 1819-1823.                                                                                   | 3.0 | 17        |
| 57 | Rapid detection of hand, foot and mouth disease enterovirus genotypes by multiplex PCR. Journal of<br>Virological Methods, 2018, 258, 7-12.                                                                                 | 1.0 | 16        |
| 58 | First documented case of avian influenza (H5N1) virus infection in a lion. Emerging Microbes and Infections, 2016, 5, 1-3.                                                                                                  | 3.0 | 15        |
| 59 | CASCIRE surveillance network and work on avian influenza viruses. Science China Life Sciences, 2017, 60, 1386-1391.                                                                                                         | 2.3 | 12        |
| 60 | Genomic characterizations of H4 subtype avian influenza viruses from live poultry markets in Sichuan<br>province of China, 2014–2015. Science China Life Sciences, 2018, 61, 1123-1126.                                     | 2.3 | 12        |
| 61 | A neonatal murine model of coxsackievirus A4 infection for evaluation of vaccines and antiviral drugs. Emerging Microbes and Infections, 2019, 8, 1445-1455.                                                                | 3.0 | 11        |
| 62 | Pathogen genomic surveillance elucidates the origins, transmission and evolution of emerging viral agents in China. Science China Life Sciences, 2017, 60, 1317-1330.                                                       | 2.3 | 10        |
| 63 | MrBayes tgMC3: A Tight GPU Implementation of MrBayes. PLoS ONE, 2013, 8, e60667.                                                                                                                                            | 1.1 | 10        |
| 64 | Intra-host Ebola viral adaption during human infection. Biosafety and Health, 2019, 1, 14-24.                                                                                                                               | 1.2 | 9         |
| 65 | Substitution Rates of the Internal Genes in the Novel Avian H7N9 Influenza Virus. Clinical Infectious<br>Diseases, 2013, 57, 1213-1215.                                                                                     | 2.9 | 8         |
| 66 | Effects of Acetylshikonin on the Infection and Replication of Coxsackievirus A16in Vitroandin Vivo.<br>Journal of Natural Products, 2019, 82, 1089-1097.                                                                    | 1.5 | 7         |
| 67 | Ecology of avian influenza viruses in migratory birds wintering within the Yangtze River wetlands.<br>Science Bulletin, 2021, 66, 2014-2024.                                                                                | 4.3 | 6         |
| 68 | MrBayes tgMC <sup>3</sup> <bold>++</bold>: A High Performance and Resource-Efficient<br>GPU-Oriented Phylogenetic Analysis Method. IEEE/ACM Transactions on Computational Biology and<br>Bioinformatics, 2016, 13, 845-854. | 1.9 | 4         |
| 69 | Sudden emergence of human infections with H7N9 avian influenza A virus in Hubei province, central<br>China. Scientific Reports, 2018, 8, 2486.                                                                              | 1.6 | 4         |
| 70 | Novel reassortant 2.3.4.4B H5N6 highly pathogenic avian influenza viruses circulating among wild,<br>domestic birds in Xinjiang, Northwest China. Journal of Veterinary Science, 2021, 22, e43.                             | 0.5 | 4         |
| 71 | Non-coding regions of the Ebola virus genome contain indispensable phylogenetic and evolutionary information. Science China Life Sciences, 2015, 58, 682-686.                                                               | 2.3 | 3         |
| 72 | Rapid humoral immune responses are required for recovery from haemorrhagic fever with renal syndrome patients. Emerging Microbes and Infections, 2020, 9, 2303-2314.                                                        | 3.0 | 3         |

| #  | Article                                                                                                                                                                                                    | IF  | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 73 | A reassortant highly pathogenic avian influenza H5N6 virus originating from the wildbird-origin H5N6<br>and the poultry H9N2/H7N9 viruses in Xinjiang, China. Medycyna Weterynaryjna, 2021, 77, 6532-2021. | 0.0 | 2         |
| 74 | Novel reassortment 2.3.4.4b H5N8 highly pathogenic avian influenza viruses circulating in Xinjiang,<br>China. Preventive Veterinary Medicine, 2022, 199, 105564.                                           | 0.7 | 2         |
| 75 | Rapid Emergence of the Reassortant 2.3.4.4b H5N2 Highly Pathogenic Avian Influenza Viruses in a Live<br>Poultry Market in Xinjiang, Northwest China. Avian Diseases, 2021, 65, 578-583.                    | 0.4 | 1         |
| 76 | Rapid detection of the emerging tick-borne Tamdy virus by TaqMan-based real-time reverse transcription PCR. Journal of Virological Methods, 2022, 305, 114538.                                             | 1.0 | 0         |