Natasha E Zachara

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1077189/publications.pdf Version: 2024-02-01

#	Article	lF	CITATIONS
1	Dynamic O-GlcNAc Modification of Nucleocytoplasmic Proteins in Response to Stress. Journal of Biological Chemistry, 2004, 279, 30133-30142.	3.4	485
2	Ogt -Dependent X-Chromosome-Linked Protein Glycosylation Is a Requisite Modification in Somatic Cell Function and Embryo Viability. Molecular and Cellular Biology, 2004, 24, 1680-1690.	2.3	391
3	O-GlcNAc a sensor of cellular state: the role of nucleocytoplasmic glycosylation in modulating cellular function in response to nutrition and stress. Biochimica Et Biophysica Acta - General Subjects, 2004, 1673, 13-28.	2.4	368
4	Cardioprotection by <i>N</i> -Acetylglucosamine Linkage to Cellular Proteins. Circulation, 2008, 117, 1172-1182.	1.6	215
5	O-Linked β-N-acetylglucosamine (O-GlcNAc) Regulates Stress-induced Heat Shock Protein Expression in a GSK-3β-dependent Manner. Journal of Biological Chemistry, 2010, 285, 39096-39107.	3.4	147
6	Unique Hexosaminidase Reduces Metabolic Survival Signal and Sensitizes Cardiac Myocytes to Hypoxia/Reoxygenation Injury. Circulation Research, 2009, 104, 41-49.	4.5	132
7	Dynamic O-GlcNAcylation and its roles in the cellular stress response and homeostasis. Cell Stress and Chaperones, 2013, 18, 535-558.	2.9	112
8	The dynamic stress-induced "O-GlcNAc-ome―highlights functions for O-GlcNAc in regulating DNA damage/repair and other cellular pathways. Amino Acids, 2011, 40, 793-808.	2.7	103
9	Stress-induced O-GlcNAcylation: an adaptive process of injured cells. Biochemical Society Transactions, 2017, 45, 237-249.	3.4	89
10	Impact of O-GlcNAc on cardioprotection by remote ischaemic preconditioning in non-diabetic and diabetic patients. Cardiovascular Research, 2013, 97, 369-378.	3.8	85
11	Sustained O-GlcNAcylation reprograms mitochondrial function to regulate energy metabolism. Journal of Biological Chemistry, 2017, 292, 14940-14962.	3.4	79
12	BioSITe: A Method for Direct Detection and Quantitation of Site-Specific Biotinylation. Journal of Proteome Research, 2018, 17, 759-769.	3.7	70
13	Excessive <i>O</i> -GlcNAcylation Causes Heart Failure and Sudden Death. Circulation, 2021, 143, 1687-1703.	1.6	65
14	The roles of <i>O</i> -linked β- <i>N</i> -acetylglucosamine in cardiovascular physiology and disease. American Journal of Physiology - Heart and Circulatory Physiology, 2012, 302, H1905-H1918.	3.2	63
15	Mitochondrial DNA and TLR9 activation contribute to SARS-CoV-2-induced endothelial cell damage. Vascular Pharmacology, 2022, 142, 106946.	2.1	59
16	Fatty acid synthase inhibits the O-GlcNAcase during oxidative stress. Journal of Biological Chemistry, 2017, 292, 6493-6511.	3.4	52
17	Detection and Analysis of Proteins Modified by O‣inked <i>N</i> â€Acetylglucosamine. Current Protocols in Protein Science, 2011, 66, Unit12.8.	2.8	51
18	Combined Antibody/Lectin Enrichment Identifies Extensive Changes in the <i>O-</i> GlcNAc Sub-proteome upon Oxidative Stress, Journal of Proteome Research, 2016, 15, 4318-4336	3.7	50

NATASHA E ZACHARA

#	Article	IF	CITATIONS
19	Mammalian cell proliferation requires noncatalytic functions of O-GlcNAc transferase. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	7.1	48
20	Characterization of the specificity of O-GlcNAc reactive antibodies under conditions of starvation and stress. Analytical Biochemistry, 2014, 457, 8-18.	2.4	41
21	Hijacking the Hexosamine Biosynthetic Pathway to Promote EMT-Mediated Neoplastic Phenotypes. Frontiers in Oncology, 2016, 6, 85.	2.8	41
22	Oxidized CaMKII and O-GlcNAcylation cause increased atrial fibrillation in diabetic mice by distinct mechanisms. Journal of Clinical Investigation, 2021, 131, .	8.2	40
23	Critical observations that shaped our understanding of the function(s) of intracellular glycosylation (Oâ€Glc <scp>NA</scp> c). FEBS Letters, 2018, 592, 3950-3975.	2.8	38
24	Post-translational Regulation of FNIP1 Creates a Rheostat for the Molecular Chaperone Hsp90. Cell Reports, 2019, 26, 1344-1356.e5.	6.4	38
25	Detection and Analysis of Proteins Modified by O‣inked <i>N</i> â€Acetylglucosamine. Current Protocols in Molecular Biology, 2011, 95, Unit 17.6.	2.9	34
26	Modulation of O-GlcNAc Levels in the Liver Impacts Acetaminophen-Induced Liver Injury by Affecting Protein Adduct Formation and Glutathione Synthesis. Toxicological Sciences, 2018, 162, 599-610.	3.1	26
27	Detecting the "O-GlcNAcomeâ€, Detection, Purification, and Analysis of O-GlcNAc Modified Proteins. , 2009, 534, 250-279.		22
28	Identification and biological consequences of theO-GlcNAc modification of the human innate immune receptor, Nod2. Glycobiology, 2015, 26, cwv076.	2.5	21
29	Quantitative Proteomics Reveals that the OGT Interactome Is Remodeled in Response to Oxidative Stress. Molecular and Cellular Proteomics, 2021, 20, 100069.	3.8	21
30	Regulation of Liver Regeneration by Hepatocyte O-GlcNAcylation in Mice. Cellular and Molecular Gastroenterology and Hepatology, 2022, 13, 1510-1529.	4.5	18
31	New use for CETSA: monitoring innate immune receptor stability via post-translational modification by OGT. Journal of Bioenergetics and Biomembranes, 2018, 50, 231-240.	2.3	16
32	Detection and Analysis of (O-linked β-N-Acetylglucosamine)-Modified Proteins. Methods in Molecular Biology, 2008, 464, 227-254.	0.9	10
33	Detection and Analysis of Proteins Modified by O‣inked <i>N</i> â€Acetylglucosamine. Current Protocols, 2021, 1, e129.	2.9	8
34	Characterization of tools to detect and enrich human and mouse O-GlcNAcase. Glycobiology, 2017, 27, 791-795.	2.5	2
35	Oâ€GlcNAcylation: a new postâ€translational modification of ribosomal proteins. FASEB Journal, 2007, 21, A280.	0.5	0
36	Dynamic Intracellular Glycosylation: Oâ€GlcNAc, is a Key Modulator of Glutamineâ€Mediated Cellular Protection and Heat Shock Protein 72 Induction. FASEB Journal, 2008, 22, 648.3.	0.5	0

#	Article	IF	CITATIONS
37	The Goldilocks Effect: Identifying the Mechanism by Which Oâ€GlcNAc Regulates the expression of OGT and Oâ€GlcNAcase in Response to Changes in Cellular State. FASEB Journal, 2010, 24, 480.8.	0.5	0
38	Oâ€GlcNAc, A Novel Paradigm for Regulating Stressâ€Induced Signal Transduction Pathways. FASEB Journal, 2012, 26, 607.1.	0.5	0
39	Monitoring Innate Immune Receptor Stability via Postâ€Translational Modification by OGT. FASEB Journal, 2018, 32, 791.20.	0.5	0
40	Regulation of Cell Physiology by O-GlcNAc. , 2022, , .		0

Regulation of Cell Physiology by O-GlcNAc. , 2022, , . 40