Fangfang Ge

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/10771182/publications.pdf Version: 2024-02-01

FANCEANC GE

#	Article	IF	CITATIONS
1	Local structural changes induced by ion bombardment in magnetron sputtered ZnO: Al films: Raman, XPS, and XAS study. Surface and Coatings Technology, 2019, 365, 2-9.	4.8	43
2	Fano resonances in ultracompact waveguide Fabry-Perot resonator side-coupled lossy nanobeam cavities. Applied Physics Letters, 2013, 103, .	3.3	39
3	Achieving very low wear rates in binary transition-metal nitrides: The case of magnetron sputtered dense and highly oriented VN coatings. Surface and Coatings Technology, 2014, 248, 81-90.	4.8	37
4	Superhard V-Si-N coatings (>50GPa) with the cell-like nanostructure prepared by magnetron sputtering. Surface and Coatings Technology, 2013, 232, 600-605.	4.8	36
5	Improved oxidation resistance of zirconium at high-temperature steam by magnetron sputtered Cr-Al-Si ternary coatings. Surface and Coatings Technology, 2018, 350, 841-847.	4.8	28
6	Effect of the 345 °C and 16.5 MPa autoclave corrosion on the oxidation behavior of Cr-coated zirconium claddings in the high-temperature steam. Corrosion Science, 2021, 189, 109608.	6.6	27
7	Microstructure, chemical states, and mechanical properties of magnetron co-sputtered V1â^'xAlxN coatings. Surface and Coatings Technology, 2013, 232, 311-318.	4.8	24
8	Enhancing the wear resistance of magnetron sputtered VN coating by Si addition. Wear, 2016, 354-355, 32-40.	3.1	23
9	Microstructure and mechanical properties of Ni-alloyed SiC coatings. Surface and Coatings Technology, 2012, 213, 77-83.	4.8	22
10	One-step synthesis of polycrystalline V2AlC thin films on amorphous substrates by magnetron co-sputtering. Vacuum, 2017, 146, 106-110.	3.5	19
11	Tribological behaviors of a magnetron sputtered CrSiN coating under ambient air and wet environments. Surface and Coatings Technology, 2017, 332, 304-311.	4.8	19
12	Enhanced plasticity of the oxide scales by in-situ formed Cr2O3/Cr heterostructures for Cr-based coatings on Zr alloy in 1200 °C steam. Corrosion Science, 2021, 184, 109361.	6.6	19
13	Friction and wear behavior of magnetron co-sputtered V–Si–N coatings. Wear, 2014, 315, 17-24.	3.1	18
14	The effects of stress on corrosion behavior of SIMP martensitic steel in static liquid lead-bismuth eutectic. Corrosion Science, 2021, 187, 109477.	6.6	18
15	Tribological behavior of VC/Ni multilayer coatings prepared by non-reactive magnetron sputtering. Tribology International, 2016, 99, 140-150.	5.9	17
16	Microstructural effect on the tribo-corrosion behaviors of magnetron sputtered CrSiN coatings. Wear, 2018, 416-417, 44-53.	3.1	17
17	Microstructural effects on the high-temperature steam oxidation resistance of magnetron sputtered Cr-Al-Si-N quaternary coatings on zirconium coupons. Surface and Coatings Technology, 2019, 374, 393-401.	4.8	16
18	Long-term oxidation resistance and deterioration mechanism of magnetron sputtered Cr-Al-Si-N coatings on zirconium alloys in 1200†°C steam atmosphere. Corrosion Science, 2020, 171, 108603.	6.6	15

Fangfang Ge

#	Article	IF	CITATIONS
19	Improved oxidation resistance through an in-situ formed diffusion barrier: Oxidation behavior of amorphous multi-component FeCrAlMoSiY-coated Zr in high-temperature steam. Corrosion Science, 2021, 189, 109566.	6.6	15
20	Hard and wear resistant VB2 coatings deposited by pulsed DC magnetron sputtering. Vacuum, 2017, 135, 66-72.	3.5	14
21	The controllable growth of Co–BaTiO3 nanocomposite epitaxial film by laser molecular beam epitaxy. Journal of Crystal Growth, 2010, 312, 2489-2493.	1.5	10
22	Optimizing the discharge voltage in magnetron sputter deposition of high quality Al-doped ZnO thin films. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 2015, 33, .	2.1	10
23	Structure of uniform and high-quality Al-doped ZnO films by magnetron sputter deposition at low temperatures. Thin Solid Films, 2018, 665, 109-116.	1.8	10
24	Effect of low-dose Xe20+ ion irradiation on the deformation behavior of the magnetron sputtered Cr coatings under nanoindentation. Surface and Coatings Technology, 2021, 428, 127907.	4.8	10
25	The oxidation mechanisms of the Xe20+ ion-irradiated Cr coatings on Zr alloy coupons: Accelerated diffusion and internal oxidation. Corrosion Science, 2022, 201, 110301.	6.6	9
26	Effects of Si content on Tribo-corrosion behavior of Cr1-xSixN coatings prepared via magnetron sputtering. Surface and Coatings Technology, 2018, 356, 11-18.	4.8	8
27	Ga-doped ZnO films by magnetron sputtering at ultralow discharge voltages: Effects of defect annihilation. Thin Solid Films, 2017, 644, 16-22.	1.8	7
28	Effect of Cr/Al Atomic Ratio on the Oxidation Resistance in 1200°C Steam for the CrAlSiN Coatings Deposited on Zr Alloy Substrates. Jom, 2019, 71, 4839-4847.	1.9	7
29	Synthesis of Zr2Al3C4 coatings on zirconium-alloy substrates with Al C/Si interlayers as diffusion barriers. Vacuum, 2019, 160, 128-132.	3.5	5
30	Controllable growth of nanocomposite films with metal nanocrystals sandwiched between dielectric superlattices. Journal of Nanoparticle Research, 2011, 13, 6447-6453.	1.9	4
31	Age hardening of a magnetron sputtered V-Al-Si-N quaternary coating. Surface and Coatings Technology, 2017, 324, 429-437.	4.8	4
32	Ga-doped ZnO films magnetron sputtered at ultralow discharge voltages: Significance of controlling defect generation. Thin Solid Films, 2018, 660, 840-845.	1.8	4
33	High Wear Resistance of Magnetron Sputtered Cr80Si20N Nanocomposite Coatings: Almost Independent of Hardness. Tribology Letters, 2018, 66, 1.	2.6	4
34	Large solubility of silicon in an incongruent nitride: The case of reactively magnetron co-sputtered W-Si-N coatings. Surface and Coatings Technology, 2021, 412, 127047.	4.8	4
35	The micro-structural studies of Ni-BaTiO3 nanocomposite films by TEM and EELS. Journal Wuhan University of Technology, Materials Science Edition, 2011, 26, 897-901.	1.0	2
36	Lattice Defects and Exfoliation Efficiency of 6H-SiC via H2+ Implantation at Elevated Temperature. Materials, 2020, 13, 5723.	2.9	2

Fangfang Ge

#	Article	IF	CITATIONS
37	Effect of Aâ€site atom on static corrosion behavior and irradiation damage of Ti ₂ SC phases. Journal of the American Ceramic Society, 2022, 105, 1386-1393.	3.8	2
38	Investigation into creepâ€ŧoâ€ŧupture of SIMP steel in stagnant LBE at 300–450°C. Materials and Corrosion - Werkstoffe Und Korrosion, 0, , .	1.5	2
39	Stability and corrosion behavior of AlO _{<i>x</i>} coating on T91 steel and SIMP steel in static liquid Pb-Bi eutectic at 600 ℃. Wuli Xuebao/Acta Physica Sinica, 2022, 71, 156103.	0.5	2
40	Xe20+ ions irradiation and autoclave corrosion coupled with steam oxidation behaviors of FeCrAlMoSiY-coated Zr claddings. Surface and Coatings Technology, 2022, 433, 128166.	4.8	1
41	Atomic Structures and Mechanical Properties of Magnetron Co-Sputtered Zr-V-N Coatings. Jom, 2022, 74, 63-71.	1.9	0