Jaques S Milner

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/10770845/publications.pdf

Version: 2024-02-01

19	1,510 citations	15	19
papers		h-index	g-index
19	19	19	1705 citing authors
all docs	docs citations	times ranked	

#	Article	IF	CITATIONS
1	Image-based computational simulation of flow dynamics in a giant intracranial aneurysm. American Journal of Neuroradiology, 2003, 24, 559-66.	1.2	258
2	Hemodynamics of human carotid artery bifurcations: Computational studies with models reconstructed from magnetic resonance imaging of normal subjects. Journal of Vascular Surgery, 1998, 28, 143-156.	0.6	241
3	Reconstruction of carotid bifurcation hemodynamics and wall thickness using computational fluid dynamics and MRI. Magnetic Resonance in Medicine, 2002, 47, 149-159.	1.9	226
4	Variation in the Carotid Bifurcation Geometry of Young Versus Older Adults. Stroke, 2005, 36, 2450-2456.	1.0	212
5	PIV-Measured Versus CFD-Predicted Flow Dynamics in Anatomically Realistic Cerebral Aneurysm Models. Journal of Biomechanical Engineering, 2008, 130, 021015.	0.6	173
6	Reproducibility of Image-Based Computational Fluid Dynamics Models of the Human Carotid Bifurcation. Annals of Biomedical Engineering, 2003, 31, 132-141.	1.3	84
7	The effect of the density–modulus relationship selected to apply material properties in a finite element model of long bone. Journal of Biomechanics, 2008, 41, 3171-3176.	0.9	72
8	Subchondral cysts create increased intra-osseous stress in early knee OA: A finite element analysis using simulated lesions. Bone, 2011, 48, 639-646.	1.4	57
9	Finite-Element Modeling of Viscoelastic Cells During High-Frequency Cyclic Strain. Journal of Functional Biomaterials, 2012, 3, 209-224.	1.8	33
10	In Vitro Shear Stress Measurements Using Particle Image Velocimetry in a Family of Carotid Artery Models: Effect of Stenosis Severity, Plaque Eccentricity, and Ulceration. PLoS ONE, 2014, 9, e98209.	1.1	27
11	Determination of Reference Geometry for Polyethylene Tibial Insert Wear Analysis. Journal of Arthroplasty, 2011, 26, 497-503.	1.5	21
12	Prediction of local proximal tibial subchondral bone structural stiffness using subject-specific finite element modeling: Effect of selected density–modulus relationship. Clinical Biomechanics, 2015, 30, 703-712.	0.5	21
13	Finite-Element Analysis of Bone Stresses on Primary Impact in a Large-Animal Model: The Distal End of the Equine Third Metacarpal. PLoS ONE, 2016, 11, e0159541.	1.1	19
14	Optimizing finite element predictions of local subchondral bone structural stiffness using neural network-derived density-modulus relationships for proximal tibial subchondral cortical and trabecular bone. Clinical Biomechanics, 2017, 41, 1-8.	0.5	18
15	Assessing the Local Mechanical Environment in Medial Opening Wedge High Tibial Osteotomy Using Finite Element Analysis. Journal of Biomechanical Engineering, 2015, 137, .	0.6	15
16	Manufacturing lot affects polyethylene tibial insert volume, thickness, and surface geometry. Proceedings of the Institution of Mechanical Engineers, Part H: Journal of Engineering in Medicine, 2013, 227, 884-889.	1.0	10
17	Surface extraction can provide a reference for micro-CT analysis of retrieved total knee implants. Knee, 2014, 21, 801-805.	0.8	10
18	Quantification ofin vivoimplant wear in total knee replacement from dynamic single plane radiography. Physics in Medicine and Biology, 2013, 58, 2751-2767.	1.6	8

#	Article	lF	CITATIONS
19	Practical fabrication of microfluidic platforms for live-cell microscopy. Biomedical Microdevices, 2016, 18, 78.	1.4	5