Christiane Schaffitzel

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/10770653/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Picomolar affinity antibodies from a fully synthetic naive library selected and evolved by ribosome display. Nature Biotechnology, 2000, 18, 1287-1292.	9.4	362
2	Free fatty acid binding pocket in the locked structure of SARS-CoV-2 spike protein. Science, 2020, 370, 725-730.	6.0	348
3	Protein complex expression by using multigene baculoviral vectors. Nature Methods, 2006, 3, 1021-1032.	9.0	330
4	Structure of the E. coli protein-conducting channel bound to a translating ribosome. Nature, 2005, 438, 318-324.	13.7	243
5	Ribosome display: an in vitro method for selection and evolution of antibodies from libraries. Journal of Immunological Methods, 1999, 231, 119-135.	0.6	202
6	Molecular mechanism and structure of Trigger Factor bound to the translating ribosome. EMBO Journal, 2008, 27, 1622-1632.	3.5	142
7	The architecture of human general transcription factor TFIID core complex. Nature, 2013, 493, 699-702.	13.7	142
8	Structure of the E. coli signal recognition particle bound to a translating ribosome. Nature, 2006, 444, 503-506.	13.7	126
9	Membrane protein insertion and proton-motive-force-dependent secretion through the bacterial holo-translocon SecYEG–SecDF–YajC–YidC. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 4844-4849.	3.3	124
10	Molecular Basis of the Rapamycin Insensitivity of Target Of Rapamycin Complex 2. Molecular Cell, 2015, 58, 977-988.	4.5	120
11	YidC and Oxa1 Form Dimeric Insertion Pores on the Translating Ribosome. Molecular Cell, 2009, 34, 344-353.	4.5	117
12	Membrane association of myotubularin-related protein 2 is mediated by a pleckstrin homology-GRAM domain and a coiled-coil dimerization module. Proceedings of the National Academy of Sciences of the United States of America, 2003, 100, 12177-12182.	3.3	113
13	Automated unrestricted multigene recombineering for multiprotein complex production. Nature Methods, 2009, 6, 447-450.	9.0	98
14	Multiple conformational switches in a GTPase complex control co-translational protein targeting. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 1754-1759.	3.3	95
15	Multi-level regulation of myotubularin-related protein-2 phosphatase activity by myotubularin-related protein-13/set-binding factor-2. Human Molecular Genetics, 2006, 15, 569-579.	1.4	92
16	Robots, pipelines, polyproteins: Enabling multiprotein expression in prokaryotic and eukaryotic cells. Journal of Structural Biology, 2011, 175, 198-208.	1.3	92
17	Dual function of UPF3B in early and late translation termination. EMBO Journal, 2017, 36, 2968-2986.	3.5	89
18	Dynamics of Trigger Factor Interaction with Translating Ribosomes. Journal of Biological Chemistry, 2008, 283, 4124-4132.	1.6	82

CHRISTIANE SCHAFFITZEL

#	Article	IF	CITATIONS
19	The SARS-CoV-2 spike protein: balancing stability and infectivity. Cell Research, 2020, 30, 1059-1060.	5.7	82
20	Elongation Arrest by SecM via a Cascade of Ribosomal RNA Rearrangements. Molecular Cell, 2006, 22, 533-543.	4.5	78
21	Cytoplasmic TAF2–TAF8–TAF10 complex provides evidence for nuclear holo–TFIID assembly from preformed submodules. Nature Communications, 2015, 6, 6011.	5.8	77
22	Molecular Simulations suggest Vitamins, Retinoids and Steroids as Ligands of the Free Fatty Acid Pocket of the SARSâ€CoVâ€⊋ Spike Protein**. Angewandte Chemie - International Edition, 2021, 60, 7098-7110.	7.2	77
23	Structure of a human cap-dependent 48S translation pre-initiation complex. Nucleic Acids Research, 2018, 46, 2678-2689.	6.5	76
24	Generation of ribosome nascent chain complexes for structural and functional studies. Journal of Structural Biology, 2007, 158, 463-471.	1.3	72
25	Cryo-EM structure of the E. coli translating ribosome in complex with SRP and its receptor. Nature Structural and Molecular Biology, 2011, 18, 88-90.	3.6	69
26	Membrane protein insertion and assembly by the bacterial holo-translocon SecYEG–SecDF–YajC–YidC. Biochemical Journal, 2016, 473, 3341-3354.	1.7	61
27	Comparison ofEscherichia coliand rabbit reticulocyte ribosome display systems. FEBS Letters, 1999, 450, 105-110.	1.3	55
28	A central cavity within the holo-translocon suggests a mechanism for membrane protein insertion. Scientific Reports, 2016, 6, 38399.	1.6	54
29	Multiprotein Expression Strategy for Structural Biology of Eukaryotic Complexes. Structure, 2007, 15, 275-279.	1.6	50
30	In vitro selection and evolution of proteins. Advances in Protein Chemistry, 2001, 55, 367-403.	4.4	46
31	Cryo-EM structure of Saccharomyces cerevisiae target of rapamycin complex 2. Nature Communications, 2017, 8, 1729.	5.8	46
32	Advances and challenges of membrane–protein complex production. Current Opinion in Structural Biology, 2015, 32, 123-130.	2.6	32
33	Ribosome–SRP–FtsY cotranslational targeting complex in the closed state. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 3943-3948.	3.3	26
34	Probing Telomeric G-Quadruplex DNA Structures in Cells with In Vitro Generated Single-Chain Antibody Fragments. Methods in Molecular Biology, 2010, 608, 159-181.	0.4	26
35	MultiBac: Baculovirus-Mediated Multigene DNA Cargo Delivery in Insect and Mammalian Cells. Viruses, 2019, 11, 198.	1.5	25
36	Pathogen-sugar interactions revealed by universal saturation transfer analysis. Science, 2022, 377, .	6.0	24

#	Article	IF	CITATIONS
37	Structural insights in cell-type specific evolution of intra-host diversity by SARS-CoV-2. Nature Communications, 2022, 13, 222.	5.8	23
38	Structure and Dynamics of the Central Lipid Pool and Proteins of the Bacterial Holo-Translocon. Biophysical Journal, 2019, 116, 1931-1940.	0.2	22
39	Structural biology in the fight against COVID-19. Nature Structural and Molecular Biology, 2021, 28, 2-7.	3.6	20
40	Synthetic virions reveal fatty acid-coupled adaptive immunogenicity of SARS-CoV-2 spike glycoprotein. Nature Communications, 2022, 13, 868.	5.8	20
41	The fatty acid site is coupled to functional motifs in the SARS-CoV-2 spike protein and modulates spike allosteric behaviour. Computational and Structural Biotechnology Journal, 2022, 20, 139-147.	1.9	19
42	ACEMBL Tool-Kits for High-Throughput Multigene Delivery and Expression in Prokaryotic and Eukaryotic Hosts. Advances in Experimental Medicine and Biology, 2016, 896, 27-42.	0.8	17
43	Structural basis of signal sequence surveillance and selection by the SRP–FtsY complex. Nature Structural and Molecular Biology, 2013, 20, 604-610.	3.6	16
44	Highly efficient CRISPR-mediated large DNA docking and multiplexed prime editing using a single baculovirus. Nucleic Acids Research, 2022, 50, 7783-7799.	6.5	15
45	Protein-fold evolution in the test tube. Trends in Biochemical Sciences, 2001, 26, 577-579.	3.7	14
46	Cryoâ \in electron microscopy of ribosomal complexes in cotranslational folding, targeting, and translocation. Wiley Interdisciplinary Reviews RNA, 2012, 3, 429-441.	3.2	13
47	Blasticidin S inhibits mammalian translation and enhances production of protein encoded by nonsense mRNA. Nucleic Acids Research, 2021, 49, 7665-7679.	6.5	13
48	Reprint of "Generation of ribosome nascent chain complexes for structural and functional studies― [J. Struct. Biol. 158 (2007) 463–471]â~†. Journal of Structural Biology, 2007, 159, 302-310.	1.3	10
49	ACEMBLing a Multiprotein Transmembrane Complex. Methods in Enzymology, 2015, 556, 23-49.	0.4	9
50	VLPâ€factoryâ,,¢ and ADDomer [©] : Selfâ€assembling Virusâ€Like Particle (VLP) Technologies for Multiple Protein and Peptide Epitope Display. Current Protocols, 2021, 1, e55.	1.3	9
51	Structures of nonsense-mediated mRNA decay factors UPF3B and UPF3A in complex with UPF2 reveal molecular basis for competitive binding and for neurodevelopmental disorder-causing mutation. Nucleic Acids Research, 2022, 50, 5934-5947.	6.5	8
52	High-Throughput Production of Influenza Virus-Like Particle (VLP) Array by Using VLP-factoryâ,,¢, a MultiBac Baculoviral Genome Customized for Enveloped VLP Expression. Methods in Molecular Biology, 2019, 2025, 213-226.	0.4	7
53	Molecular Simulations suggest Vitamins, Retinoids and Steroids as Ligands of the Free Fatty Acid Pocket of the SARSâ€CoVâ€⊋ Spike Protein**. Angewandte Chemie, 2021, 133, 7174-7186.	1.6	6
54	Efficient production of a mature and functional gamma secretase protease. Scientific Reports, 2018, 8, 12834.	1.6	5

#	Article	IF	CITATIONS
55	Multiprotein Complex Production in E. coli: The SecYEG-SecDFYajC-YidC Holotranslocon. Methods in Molecular Biology, 2017, 1586, 279-290.	0.4	2
56	Production of Multi-subunit Membrane Protein Complexes. Methods in Molecular Biology, 2021, 2247, 3-16.	0.4	1
57	Cell-Free Synthesis of Macromolecular Complexes. Advances in Experimental Medicine and Biology, 2016, 896, 79-95.	0.8	0