Jan Huisken

List of Publications by Year in Descending Order

Source: https://exaly.com/author-pdf/1076972/jan-huisken-publications-by-year.pdf

Version: 2024-04-20

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

82 6,841 82 37 h-index g-index citations papers 8,601 6.15 101 10.5 avg, IF L-index ext. citations ext. papers

#	Paper	IF	Citations
82	Hand2 delineates mesothelium progenitors and is reactivated in mesothelioma <i>Nature Communications</i> , 2022 , 13, 1677	17.4	3
81	Spatial transcriptomics reveals antiparasitic targets associated with essential behaviors in the human parasite Brugia malayi <i>PLoS Pathogens</i> , 2022 , 18, e1010399	7.6	0
80	KRas-transformed epithelia cells invade and partially dedifferentiate by basal cell extrusion. <i>Nature Communications</i> , 2021 , 12, 7180	17.4	5
79	Multidisciplinarity Is Critical to Unlock the Full Potential of Modern Light Microscopy. <i>Frontiers in Cell and Developmental Biology</i> , 2021 , 9, 739015	5.7	
78	linus: Conveniently explore, share, and present large-scale biological trajectory data in a web browser. <i>PLoS Computational Biology</i> , 2021 , 17, e1009503	5	1
77	Tutorial: practical considerations for tissue clearing and imaging. <i>Nature Protocols</i> , 2021 , 16, 2732-2748	18.8	12
76	Role of Secretoglobin (club cell) NF B /RelA-TGFB ignaling in aero-allergen-induced epithelial plasticity and subepithelial myofibroblast transdifferentiation <i>Respiratory Research</i> , 2021 , 22, 315	7.3	2
75	Efficacy of Voriconazole against Aspergillus fumigatus Infection Depends on Host Immune Function. <i>Antimicrobial Agents and Chemotherapy</i> , 2020 , 64,	5.9	5
74	Label-free redox imaging of patient-derived organoids using selective plane illumination microscopy. <i>Biomedical Optics Express</i> , 2020 , 11, 2591-2606	3.5	11
73	Image quality guided smart rotation improves coverage in microscopy. <i>Nature Communications</i> , 2020 , 11, 150	17.4	11
72	Long-term in vivo imaging reveals tumor-specific dissemination and captures host tumor interaction in zebrafish xenografts. <i>Scientific Reports</i> , 2020 , 10, 13254	4.9	11
71	The effect of hyperglycemia on neurovascular coupling and cerebrovascular patterning in zebrafish. <i>Journal of Cerebral Blood Flow and Metabolism</i> , 2020 , 40, 298-313	7.3	10
70	A conserved regulatory program initiates lateral plate mesoderm emergence across chordates. <i>Nature Communications</i> , 2019 , 10, 3857	17.4	24
69	3Dscript: animating 3D/4D microscopy data using a natural-language-based syntax. <i>Nature Methods</i> , 2019 , 16, 278-280	21.6	29
68	Multi-sample SPIM image acquisition, processing and analysis of vascular growth in zebrafish. <i>Development (Cambridge)</i> , 2019 , 146,	6.6	26
67	Loss of the Polycomb group protein Rnf2 results in derepression of tbx-transcription factors and defects in embryonic and cardiac development. <i>Scientific Reports</i> , 2019 , 9, 4327	4.9	9
66	Cerebrovascular endothelial cells form transient Notch-dependent cystic structures in zebrafish. <i>EMBO Reports</i> , 2019 , 20, e47047	6.5	10

(2015-2019)

65	Putting advanced microscopy in the hands of biologists. <i>Nature Methods</i> , 2019 , 16, 1069-1073	21.6	14
64	Multi-scale imaging and analysis identify pan-embryo cell dynamics of germlayer formation in zebrafish. <i>Nature Communications</i> , 2019 , 10, 5753	17.4	22
63	Adaptable, illumination patterning light sheet microscopy. Scientific Reports, 2018, 8, 9615	4.9	8
62	Neuromesodermal progenitors are a conserved source of spinal cord with divergent growth dynamics. <i>Development (Cambridge)</i> , 2018 , 145,	6.6	35
61	Dynamic and non-contact 3D sample rotation for microscopy. <i>Nature Communications</i> , 2018 , 9, 5025	17.4	11
60	Continuous addition of progenitors forms the cardiac ventricle in zebrafish. <i>Nature Communications</i> , 2018 , 9, 2001	17.4	28
59	Light Sheet Microscopy 2017 , 243-265		2
58	A guide to light-sheet fluorescence microscopy for multiscale imaging. <i>Nature Methods</i> , 2017 , 14, 360-3	37 3 1.6	328
57	Spatiotemporal Deformable Prototypes for Motion Anomaly Detection. <i>International Journal of Computer Vision</i> , 2017 , 122, 502-523	10.6	3
56	Smart Microscopy for Multi-Scale Developmental Biology in Real-Time. <i>Microscopy and Microanalysis</i> , 2017 , 23, 1166-1167	0.5	
55	Cell-accurate optical mapping across the entire developing heart. <i>ELife</i> , 2017 , 6,	8.9	39
54	Fast Fluorescence Microscopy with Light Sheets. <i>Biological Bulletin</i> , 2016 , 231, 14-25	1.5	20
53	eduSPIM: Light Sheet Microscopy in the Museum. <i>PLoS ONE</i> , 2016 , 11, e0161402	3.7	8
52	Software Framework for Controlling Unsupervised Scientific Instruments. <i>PLoS ONE</i> , 2016 , 11, e016167	713.7	1
51	Biology-inspired visualization of morphogenetic motion in the zebrafish endoderm 2016,		2
50	The smart and gentle microscope. <i>Nature Biotechnology</i> , 2015 , 33, 815-8	44.5	52
49	Endothelial cell self-fusion during vascular pruning. <i>PLoS Biology</i> , 2015 , 13, e1002126	9.7	94
48	Optical tomography complements light sheet microscopy for in toto imaging of zebrafish development. <i>Development (Cambridge)</i> , 2015 , 142, 1016-20	6.6	53

47	Hyperspectral light sheet microscopy. <i>Nature Communications</i> , 2015 , 6, 7990	17.4	74
46	Real-time multi-view deconvolution. <i>Bioinformatics</i> , 2015 , 31, 3398-400	7.2	26
45	Guide to light-sheet microscopy for adventurous biologists. <i>Nature Methods</i> , 2015 , 12, 30-4	21.6	135
44	Regulation of 🛘 integrin-Klf2-mediated angiogenesis by CCM proteins. <i>Developmental Cell</i> , 2015 , 32, 181-90	10.2	99
43	Mechanical Coupling between Endoderm Invagination and Axis Extension in Drosophila. <i>PLoS Biology</i> , 2015 , 13, e1002292	9.7	88
42	In vivo imaging of cardiac development and function in zebrafish using light sheet microscopy. <i>Swiss Medical Weekly</i> , 2015 , 145, w14227	3.1	19
41	Genome-wide RNA Tomography in the zebrafish embryo. <i>Cell</i> , 2014 , 159, 662-75	56.2	174
40	Light sheet microscopy. <i>Methods in Cell Biology</i> , 2014 , 123, 193-215	1.8	60
39	High-resolution reconstruction of the beating zebrafish heart. <i>Nature Methods</i> , 2014 , 11, 919-22	21.6	153
38	Multilayer mounting for long-term light sheet microscopy of zebrafish. <i>Journal of Visualized Experiments</i> , 2014 , e51119	1.6	18
37	Single continuous lumen formation in the zebrafish gut is mediated by smoothened-dependent tissue remodeling. <i>Development (Cambridge)</i> , 2014 , 141, 1110-9	6.6	65
36	OpenSPIM: an open-access light-sheet microscopy platform. <i>Nature Methods</i> , 2013 , 10, 598-9	21.6	215
35	High-speed panoramic light-sheet microscopy reveals global endodermal cell dynamics. <i>Nature Communications</i> , 2013 , 4, 2207	17.4	127
34	Rapid 3D light-sheet microscopy with a tunable lens. <i>Optics Express</i> , 2013 , 21, 21010-26	3.3	233
33	The Popeye domain containing 2 (popdc2) gene in zebrafish is required for heart and skeletal muscle development. <i>Developmental Biology</i> , 2012 , 363, 438-50	3.1	46
32	Multilayer mounting enables long-term imaging of zebrafish development in a light sheet microscope. <i>Development (Cambridge)</i> , 2012 , 139, 3242-7	6.6	172
31	Fibrillin-2b regulates endocardial morphogenesis in zebrafish. <i>Developmental Biology</i> , 2012 , 372, 111-9	3.1	13
30	Transgenic zebrafish illuminate the dynamics of thyroid morphogenesis and its relationship to cardiovascular development. <i>Developmental Biology</i> , 2012 , 372, 203-16	3.1	52

29	Slicing embryos gently with laser light sheets. <i>BioEssays</i> , 2012 , 34, 406-11	4.1	30
28	Light sheet microscopy for real-time developmental biology. <i>Current Opinion in Genetics and Development</i> , 2011 , 21, 566-72	4.9	109
27	A dual role for ErbB2 signaling in cardiac trabeculation. <i>Development (Cambridge)</i> , 2010 , 137, 3867-75	6.6	151
26	Optogenetic control of cardiac function. <i>Science</i> , 2010 , 330, 971-4	33.3	338
25	Cse1l is a negative regulator of CFTR-dependent fluid secretion. Current Biology, 2010, 20, 1840-5	6.3	42
24	Genetic evidence for a noncanonical function of seryl-tRNA synthetase in vascular development. <i>Circulation Research</i> , 2009 , 104, 1260-6	15.7	54
23	Arterial-venous segregation by selective cell sprouting: an alternative mode of blood vessel formation. <i>Science</i> , 2009 , 326, 294-8	33.3	256
22	Selective plane illumination microscopy techniques in developmental biology. <i>Development</i> (Cambridge), 2009 , 136, 1963-75	6.6	393
21	The extracellular domain of Smoothened regulates ciliary localization and is required for high-level Hh signaling. <i>Current Biology</i> , 2009 , 19, 1034-9	6.3	70
20	Multiple roles for Med12 in vertebrate endoderm development. <i>Developmental Biology</i> , 2008 , 317, 467	-7391	41
19	Regulation of neurocoel morphogenesis by Pard6 gamma b. <i>Developmental Biology</i> , 2008 , 324, 41-54	3.1	47
18	High-speed imaging of developing heart valves reveals interplay of morphogenesis and function. <i>Development (Cambridge)</i> , 2008 , 135, 1179-87	6.6	159
17	Genetic and physiologic dissection of the vertebrate cardiac conduction system. <i>PLoS Biology</i> , 2008 , 6, e109	9.7	196
16	Even fluorescence excitation by multidirectional selective plane illumination microscopy (mSPIM). <i>Optics Letters</i> , 2007 , 32, 2608-10	3	270
15	Three-dimensional optical manipulation using four collimated intersecting laser beams. <i>Optics Express</i> , 2007 , 15, 4921-8	3.3	9
14	Multi-view image fusion improves resolution in three-dimensional microscopy. <i>Optics Express</i> , 2007 , 15, 8029-42	3.3	147
13	Zebrafish model for human long QT syndrome. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2007 , 104, 11316-21	11.5	183
12	Selective Plane Illumination Microscopy 2006 , 672-679		2

11	Studying live embryos in 4D: Selective plane illumination microscopy: a new technique for high-resolution four-dimensional imaging. <i>Biochemist</i> , 2005 , 27, 13-16	0.5	1
10	Optical sectioning deep inside live embryos by selective plane illumination microscopy. <i>Science</i> , 2004 , 305, 1007-9	33.3	1531
9	Active particle manipulation with four laser beams 2004 , 5322, 114		1
8	Multiple imaging axis microscopy improves resolution for thick-sample applications. <i>Optics Letters</i> , 2003 , 28, 1654-6	3	48
7	Optical Trapping of Small Particles. Springer Series in Optical Sciences, 2003, 357-388	0.5	
6	Optical levitation of absorbing particles with a nominally Gaussian laser beam. <i>Optics Letters</i> , 2002 , 27, 1223-5	3	28
5	Optical scanning holography as a technique for high-resolution three-dimensional biological microscopy. <i>Journal of the Optical Society of America A: Optics and Image Science, and Vision</i> , 2002 , 19, 1910-8	1.8	40
4	linus: Conveniently explore, share, and present large-scale biological trajectory data from a web brows	ser	1
3	Hand2 delineates mesothelium progenitors and is reactivated in mesothelioma		3
2	Continuous high-resolution in vivo imaging reveals tumor-specific dissemination in an embryonic zebrafish xenograft model		3
1	Pan-embryo cell dynamics of germlayer formation in zebrafish		4