Jan Huisken

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1076972/publications.pdf

Version: 2024-02-01

81	9,394	39	78
papers	citations	h-index	g-index
101	101	101	9755
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Optical Sectioning Deep Inside Live Embryos by Selective Plane Illumination Microscopy. Science, 2004, 305, 1007-1009.	6.0	2,103
2	Selective plane illumination microscopy techniques in developmental biology. Development (Cambridge), 2009, 136, 1963-1975.	1.2	520
3	A guide to light-sheet fluorescence microscopy for multiscale imaging. Nature Methods, 2017, 14, 360-373.	9.0	496
4	Optogenetic Control of Cardiac Function. Science, 2010, 330, 971-974.	6.0	426
5	Even fluorescence excitation by multidirectional selective plane illumination microscopy (mSPIM). Optics Letters, 2007, 32, 2608.	1.7	398
6	Rapid 3D light-sheet microscopy with a tunable lens. Optics Express, 2013, 21, 21010.	1.7	348
7	OpenSPIM: an open-access light-sheet microscopy platform. Nature Methods, 2013, 10, 598-599.	9.0	312
8	Arterial-Venous Segregation by Selective Cell Sprouting: An Alternative Mode of Blood Vessel Formation. Science, 2009, 326, 294-298.	6.0	302
9	Genome-wide RNA Tomography in the Zebrafish Embryo. Cell, 2014, 159, 662-675.	13.5	248
10	Genetic and Physiologic Dissection of the Vertebrate Cardiac Conduction System. PLoS Biology, 2008, 6, e109.	2.6	233
11	High-resolution reconstruction of the beating zebrafish heart. Nature Methods, 2014, 11, 919-922.	9.0	226
12	Multilayer mounting enables long-term imaging of zebrafish development in a light sheet microscope. Development (Cambridge), 2012, 139, 3242-3247.	1.2	225
13	Zebrafish model for human long QT syndrome. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 11316-11321.	3.3	215
14	Multi-view image fusion improves resolution in three-dimensional microscopy. Optics Express, 2007, 15, 8029.	1.7	205
15	A dual role for ErbB2 signaling in cardiac trabeculation. Development (Cambridge), 2010, 137, 3867-3875.	1.2	195
16	Guide to light-sheet microscopy for adventurous biologists. Nature Methods, 2015, 12, 30-34.	9.0	191
17	High-speed imaging of developing heart valves reveals interplay of morphogenesis and function. Development (Cambridge), 2008, 135, 1179-1187.	1.2	188
18	High-speed panoramic light-sheet microscopy reveals global endodermal cell dynamics. Nature Communications, 2013, 4, 2207.	5.8	161

#	Article	IF	CITATIONS
19	Light sheet microscopy for real-time developmental biology. Current Opinion in Genetics and Development, 2011, 21, 566-572.	1.5	146
20	Mechanical Coupling between Endoderm Invagination and Axis Extension in Drosophila. PLoS Biology, 2015, 13, e1002292.	2.6	128
21	Regulation of \hat{l}^21 Integrin-Klf2-Mediated Angiogenesis by CCM Proteins. Developmental Cell, 2015, 32, 181-190.	3.1	127
22	Endothelial Cell Self-fusion during Vascular Pruning. PLoS Biology, 2015, 13, e1002126.	2.6	119
23	Single continuous lumen formation in the zebrafish gut is mediated by <i>smoothened</i> dependent tissue remodeling. Development (Cambridge), 2014, 141, 1110-1119.	1.2	93
24	Hyperspectral light sheet microscopy. Nature Communications, 2015, 6, 7990.	5.8	92
25	The smart and gentle microscope. Nature Biotechnology, 2015, 33, 815-818.	9.4	85
26	The Extracellular Domain of Smoothened Regulates Ciliary Localization and Is Required for High-Level Hh Signaling. Current Biology, 2009, 19, 1034-1039.	1.8	81
27	Light sheet microscopy. Methods in Cell Biology, 2014, 123, 193-215.	0.5	76
28	Transgenic zebrafish illuminate the dynamics of thyroid morphogenesis and its relationship to cardiovascular development. Developmental Biology, 2012, 372, 203-216.	0.9	72
29	Optical tomography complements light sheet microscopy for <i>in toto</i> imaging of zebrafish development. Development (Cambridge), 2015, 142, 1016-1020.	1.2	65
30	Genetic Evidence for a Noncanonical Function of Seryl-tRNA Synthetase in Vascular Development. Circulation Research, 2009, 104, 1260-1266.	2.0	64
31	Multiple imaging axis microscopy improves resolution for thick-sample applications. Optics Letters, 2003, 28, 1654.	1.7	60
32	3Dscript: animating 3D/4D microscopy data using a natural-language-based syntax. Nature Methods, 2019, 16, 278-280.	9.0	58
33	The Popeye domain containing 2 (popdc2) gene in zebrafish is required for heart and skeletal muscle development. Developmental Biology, 2012, 363, 438-450.	0.9	57
34	Optical scanning holography as a technique for high-resolution three-dimensional biological microscopy. Journal of the Optical Society of America A: Optics and Image Science, and Vision, 2002, 19, 1910.	0.8	54
35	Regulation of neurocoel morphogenesis by Pard6γb. Developmental Biology, 2008, 324, 41-54.	0.9	53
36	A conserved regulatory program initiates lateral plate mesoderm emergence across chordates. Nature Communications, 2019, 10, 3857.	5.8	51

#	Article	IF	CITATIONS
37	Tutorial: practical considerations for tissue clearing and imaging. Nature Protocols, 2021, 16, 2732-2748.	5.5	51
38	Neuromesodermal progenitors are a conserved source of spinal cord with divergent growth dynamics. Development (Cambridge), 2018, 145, .	1.2	49
39	Optical levitation of absorbing particles with a nominally Gaussian laser beam. Optics Letters, 2002, 27, 1223.	1.7	48
40	Cell-accurate optical mapping across the entire developing heart. ELife, 2017, 6, .	2.8	48
41	Continuous addition of progenitors forms the cardiac ventricle in zebrafish. Nature Communications, 2018, 9, 2001.	5.8	48
42	Csell Is a Negative Regulator of CFTR-Dependent Fluid Secretion. Current Biology, 2010, 20, 1840-1845.	1.8	47
43	Multiple roles for Med12 in vertebrate endoderm development. Developmental Biology, 2008, 317, 467-479.	0.9	45
44	Multi-sample SPIM image acquisition, processing and analysis of vascular growth in zebrafish. Development (Cambridge), 2019, 146, .	1.2	40
45	Multi-scale imaging and analysis identify pan-embryo cell dynamics of germlayer formation in zebrafish. Nature Communications, 2019, 10, 5753.	5.8	40
46	Slicing embryos gently with laser light sheets. BioEssays, 2012, 34, 406-411.	1.2	36
47	Real-time multi-view deconvolution. Bioinformatics, 2015, 31, 3398-3400.	1.8	35
48	Multilayer Mounting for Long-term Light Sheet Microscopy of Zebrafish. Journal of Visualized Experiments, 2014, , e51119.	0.2	28
49	Fast Fluorescence Microscopy with Light Sheets. Biological Bulletin, 2016, 231, 14-25.	0.7	27
50	Putting advanced microscopy in the hands of biologists. Nature Methods, 2019, 16, 1069-1073.	9.0	25
51	In vivo imaging of cardiac development and function in zebrafish using light sheet microscopy. Swiss Medical Weekly, 2015, 145, w14227.	0.8	25
52	Omnidirectional microscopy. Nature Methods, 2012, 9, 656-657.	9.0	22
53	Label-free redox imaging of patient-derived organoids using selective plane illumination microscopy. Biomedical Optics Express, 2020, 11, 2591.	1.5	21
54	Long-term in vivo imaging reveals tumor-specific dissemination and captures host tumor interaction in zebrafish xenografts. Scientific Reports, 2020, 10, 13254.	1.6	20

#	Article	IF	Citations
55	Loss of the Polycomb group protein Rnf2 results in derepression of tbx-transcription factors and defects in embryonic and cardiac development. Scientific Reports, 2019, 9, 4327.	1.6	18
56	Dynamic and non-contact 3D sample rotation for microscopy. Nature Communications, 2018, 9, 5025.	5.8	17
57	Cerebrovascular endothelial cells form transient Notchâ€dependent cystic structures in zebrafish. EMBO Reports, 2019, 20, e47047.	2.0	17
58	Efficacy of Voriconazole against Aspergillus fumigatus Infection Depends on Host Immune Function. Antimicrobial Agents and Chemotherapy, 2020, 64, .	1.4	17
59	Hand2 delineates mesothelium progenitors and is reactivated in mesothelioma. Nature Communications, 2022, 13, 1677.	5.8	17
60	A versatile cortical pattern-forming circuit based on Rho, F-actin, Ect2, and RGA-3/4. Journal of Cell Biology, 2022, 221, .	2.3	17
61	Fibrillin-2b regulates endocardial morphogenesis in zebrafish. Developmental Biology, 2012, 372, 111-119.	0.9	16
62	The effect of hyperglycemia on neurovascular coupling and cerebrovascular patterning in zebrafish. Journal of Cerebral Blood Flow and Metabolism, 2020, 40, 298-313.	2.4	16
63	Image quality guided smart rotation improves coverage in microscopy. Nature Communications, 2020, 11, 150.	5.8	16
64	KRas-transformed epithelia cells invade and partially dedifferentiate by basal cell extrusion. Nature Communications, 2021, 12, 7180.	5.8	16
65	Three-dimensional optical manipulation using four collimated intersecting laser beams. Optics Express, 2007, 15, 4921.	1.7	12
66	Spatial transcriptomics reveals antiparasitic targets associated with essential behaviors in the human parasite Brugia malayi. PLoS Pathogens, 2022, 18, e1010399.	2.1	12
67	Adaptable, illumination patterning light sheet microscopy. Scientific Reports, 2018, 8, 9615.	1.6	11
68	eduSPIM: Light Sheet Microscopy in the Museum. PLoS ONE, 2016, 11, e0161402.	1.1	9
69	Spatiotemporal Deformable Prototypes for Motion Anomaly Detection. International Journal of Computer Vision, 2017, 122, 502-523.	10.9	4
70	Role of Secretoglobin+ (club cell) NFκB/RelA-TGFβ signaling in aero-allergen-induced epithelial plasticity and subepithelial myofibroblast transdifferentiation. Respiratory Research, 2021, 22, 315.	1.4	4
71	Selective Plane Illumination Microscopy. , 2006, , 672-679.		3
72	Biology-inspired visualization of morphogenetic motion in the zebrafish endoderm. , 2016, , .		3

#	Article	IF	CITATIONS
73	Intraoperative histology: Lightning 3D histopathology. Nature Biomedical Engineering, 2017, 1, .	11.6	3
74	Optical Trapping of Small Particles. Springer Series in Optical Sciences, 2003, , 357-388.	0.5	2
75	linus: Conveniently explore, share, and present large-scale biological trajectory data in a web browser. PLoS Computational Biology, 2021, 17, e1009503.	1.5	2
76	Active particle manipulation with four laser beams. , 2004, 5322, 114.		1
77	Studying live embryos in 4D: Selective plane illumination microscopy: a new technique for high-resolution four-dimensional imaging. Biochemist, 2005, 27, 13-16.	0.2	1
78	Software Framework for Controlling Unsupervised Scientific Instruments. PLoS ONE, 2016, 11, e0161671.	1.1	1
79	Multidisciplinarity Is Critical to Unlock the Full Potential of Modern Light Microscopy. Frontiers in Cell and Developmental Biology, 2021, 9, 739015.	1.8	1
80	Csell Is a Negative Regulator of CFTR-Dependent Fluid Secretion. Current Biology, 2010, 20, 2157.	1.8	0
81	Smart Microscopy for Multi-Scale Developmental Biology in Real-Time. Microscopy and Microanalysis, 2017, 23, 1166-1167.	0.2	0