
Michel Aguet

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/10769554/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Normal development and behaviour of mice lacking the neuronal cell-surface PrP protein. Nature, 1992, 356, 577-582.	13.7	1,582
2	Targeted Disruption of the Stat1 Gene in Mice Reveals Unexpected Physiologic Specificity in the JAK–STAT Signaling Pathway. Cell, 1996, 84, 431-442.	13.5	1,537
3	Deficient T Cell Fate Specification in Mice with an Induced Inactivation of Notch1. Immunity, 1999, 10, 547-558.	6.6	1,270
4	THE IFNÎ ³ RECEPTOR:A Paradigm for Cytokine Receptor Signaling. Annual Review of Immunology, 1997, 15, 563-591.	9.5	941
5	A stroma-related gene signature predicts resistance to neoadjuvant chemotherapy in breast cancer. Nature Medicine, 2009, 15, 68-74.	15.2	566
6	Molecular cloning and expression of the human interferon-Î ³ receptor. Cell, 1988, 55, 273-280.	13.5	511
7	The Orphan Receptor CRF2-4 Is an Essential Subunit of the Interleukin 10 Receptor. Journal of Experimental Medicine, 1998, 187, 571-578.	4.2	337
8	High-affinity binding of 125I-labelled mouse interferon to a specific cell surface receptor. Nature, 1980, 284, 459-461.	13.7	286
9	Immune Defence in Mice Lacking Type I and/or Type II Interferon Receptors. Immunological Reviews, 1995, 148, 5-18.	2.8	267
10	Notch1 is required for neuronal and glial differentiation in the cerebellum. Development (Cambridge), 2002, 129, 373-385.	1.2	224
11	A novel member of the interferon receptor family complements functionality of the murine interferon Î ³ receptor in human cells. Cell, 1994, 76, 803-810.	13.5	216
12	Notch1 control of oligodendrocyte differentiation in the spinal cord. Journal of Cell Biology, 2002, 158, 709-718.	2.3	189
13	Notch1 Deficiency Dissociates the Intrathymic Development of Dendritic Cells and T Cells. Journal of Experimental Medicine, 2000, 191, 1085-1094.	4.2	146
14	High affinity binding of 125I-labeled mouse interferon to a specific cell surface receptor II. Analysis of binding properties. Virology, 1981, 115, 249-261.	1.1	139
15	Notch signaling is required for normal prostatic epithelial cell proliferation and differentiation. Developmental Biology, 2006, 290, 66-80.	0.9	132
16	Multiple roles of mouse Numb in tuning developmental cell fates. Current Biology, 2001, 11, 494-501.	1.8	121
17	Various human interferon a subclasses cross-react with common receptors: Their binding affinities correlate with their specific biological activities. Virology, 1984, 132, 211-216.	1.1	119
18	Binding of125I-labelled human αinterferon to human lymphoid cells. International Journal of Cancer, 1981, 28, 575-582.	2.3	117

MICHEL AGUET

#	Article	IF	CITATIONS
19	Specific high-affinity binding of 125I-labeled mouse interferon to interferon resistant embryonal carcinoma cells in vitro. Virology, 1981, 114, 585-588.	1.1	66
20	Normal Hemopoiesis and Lymphopoiesis in the Combined Absence of Numb and Numblike. Journal of Immunology, 2007, 178, 6746-6751.	0.4	58
21	Defining new criteria for selection of cell-based intestinal models using publicly available databases. BMC Genomics, 2012, 13, 274.	1.2	49
22	Molecular cloning of interferon receptors: a short review. British Journal of Haematology, 1991, 79, 6-8.	1.2	34
23	Enhancement of FcÎ ³ receptor expression in interferontreated mice. European Journal of Immunology, 1981, 11, 926-930.	1.6	24
24	Dissection of the extracellular human interferon .gamma. receptor .alphachain into two immunoglobulin-like domains. Production in an Escherichia coli thioredoxin gene fusion expression system and recognition by neutralizing antibodies. Biochemistry, 1995, 34, 1787-1797.	1.2	20
25	The Interferon-Î ³ Receptor: A Comparison with Other Cytokine Receptors. Journal of Interferon Research, 1990, 10, 551-558.	1.2	18
26	Human chromosome 21 is necessary and sufficient to confer human IFN γ responsiveness to somatic cell hybrids expressing the cloned human IFN γ receptor gene. Cytokine, 1990, 2, 157-161.	1.4	18
27	Molecular Characterization of the Human Interferon-Î ³ Receptor: Analysis of Polymorphism and Glycosylation. Journal of Interferon Research, 1989, 9, 659-669.	1.2	14
28	[47] Procedures for studying binding of interferon to mouse cells. Methods in Enzymology, 1986, 119, 321-325.	0.4	3
29	Gene Targeting by Homologous Recombination as a Tool to Study the Biophysical Role of the Interferon-Î ³ Signalling Pathway. , 1991, , 85-99.		0

30 The PrP-less Mouse: A Tool for Prion Research., 1993, , 39-56.

0