Amir Hadid

List of Publications by Year in Descending Order

Source: https://exaly.com/author-pdf/10769456/amir-hadid-publications-by-year.pdf

Version: 2024-04-28

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

11	116	7	10
papers	citations	h-index	g-index
11	142	4.3 avg, IF	2. 09
ext. papers	ext. citations		L-index

#	Paper	IF	Citations
11	Biomechanical Model for Stress Fracture-related Factors in Athletes and Soldiers. <i>Medicine and Science in Sports and Exercise</i> , 2018 , 50, 1827-1836	1.2	16
10	Effects of an improved biomechanical backpack strap design on load transfer to the shoulder soft tissues. <i>Journal of Biomechanics</i> , 2018 , 76, 45-52	2.9	4
9	Effect of Load Carriage on Upper Limb Performance. <i>Medicine and Science in Sports and Exercise</i> , 2017 , 49, 1006-1014	1.2	10
8	The Mechanophysiololgy of Stress Fractures in Military Recruits. <i>Studies in Mechanobiology, Tissue Engineering and Biomaterials</i> , 2016 , 163-185	0.5	
7	The effect of mechanical strains in soft tissues of the shoulder during load carriage. <i>Journal of Biomechanics</i> , 2015 , 48, 4160-4165	2.9	10
6	Physiological and cognitive military related performances after 10-kilometer march. <i>Disaster and Military Medicine</i> , 2015 , 1, 6		3
5	Deformations in the Shoulder Tissues During Load Carriage: A Computational Model. <i>Journal of Strength and Conditioning Research</i> , 2015 , 29 Suppl 11, S144-8	3.2	1
4	Tibial stress changes in new combat recruits for special forces: patterns and timing at MR imaging. <i>Radiology</i> , 2014 , 273, 483-90	20.5	8
3	Variation in tibial functionality and fracture susceptibility among healthy, young adults arises from the acquisition of biologically distinct sets of traits. <i>Journal of Bone and Mineral Research</i> , 2013 , 28, 129	0 <u>6</u> 3 <u>9</u> 0	34
2	Modeling mechanical strains and stresses in soft tissues of the shoulder during load carriage based on load-bearing open MRI. <i>Journal of Applied Physiology</i> , 2012 , 112, 597-606	3.7	22
1	Motivation, cohesion, satisfaction, and their relation to stress fracture among female military recruits. <i>European Journal of Applied Physiology</i> , 2008 , 104, 329-35	3.4	8