JolÃ;n CsiszÃ;r

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1076940/publications.pdf

Version: 2024-02-01

#	Article	IF	CITATIONS
1	Crosstalk between the Arabidopsis Glutathione Peroxidase-Like 5 Isoenzyme (AtGPXL5) and Ethylene. International Journal of Molecular Sciences, 2022, 23, 5749.	4.1	4
2	Systemic response to Fusarium graminearum and culmorum inoculations: changes in detoxification of flag leaves in wheat. Cereal Research Communications, 2022, 50, 1055-1063.	1.6	2
3	Crosstalk between the redox signalling and the detoxification: GSTs under redox control?. Plant Physiology and Biochemistry, 2021, 169, 149-159.	5.8	9
4	Compensation of Mutation in Arabidopsis glutathione transferase (AtGSTU) Genes under Control or Salt Stress Conditions. International Journal of Molecular Sciences, 2020, 21, 2349.	4.1	17
5	Overexpression of the Arabidopsis glutathione peroxidase-like 5 gene (AtGPXL5) resulted in altered plant development and redox status. Environmental and Experimental Botany, 2019, 167, 103849.	4.2	15
6	Morphological, physiological and biochemical aspects of salt tolerance of halophyte Petrosimonia triandra grown in natural habitat. Physiology and Molecular Biology of Plants, 2019, 25, 1335-1347.	3.1	6
7	Genome-wide identification of the glutathione transferase superfamily in the model organism Brachypodium distachyon. Functional Plant Biology, 2019, 46, 1049.	2.1	6
8	The Arabidopsis glutathione transferases, AtGSTF8 and AtGSTU19 are involved in the maintenance of root redox homeostasis affecting meristem size and salt stress sensitivity. Plant Science, 2019, 283, 366-374.	3.6	25
9	Editorial: Plant Glutathione Transferases: Diverse, Multi-Tasking Enzymes With Yet-to-Be Discovered Functions. Frontiers in Plant Science, 2019, 10, 1304.	3.6	11
10	Comprehensive analysis of antioxidant mechanisms in Arabidopsis glutathione peroxidase-like mutants under salt- and osmotic stress reveals organ-specific significance of the AtGPXL's activities. Environmental and Experimental Botany, 2018, 150, 127-140.	4.2	30
11	Diurnal changes in tomato glutathione transferase activity and expression. Acta Biologica Hungarica, 2018, 69, 505-509.	0.7	9
12	Exogenously applied salicylic acid maintains redox homeostasis in salt-stressed Arabidopsis gr1 mutants expressing cytosolic roGFP1. Plant Growth Regulation, 2018, 86, 181-194.	3.4	40
13	Plant Glutathione Transferases and Light. Frontiers in Plant Science, 2018, 9, 1944.	3.6	63
14	Plant Glutathione Peroxidases: Structural and Functional Characterization, Their Roles in Plant Development. , 2017, , 99-111.		0
15	Plant Glutathione Peroxidases: Antioxidant Enzymes in Plant Stress Responses and Tolerance. , 2017, , 113-126.		5
16	Physiological and molecular responses to heavy metal stresses suggest different detoxification mechanism of Populus deltoides and P. x canadensis. Journal of Plant Physiology, 2016, 201, 62-70.	3.5	35
17	The role of Arabidopsis glutathione transferase F9 gene under oxidative stress in seedlings. Acta Biologica Hungarica, 2015, 66, 406-418	0.7	21
18	Exogenous salicylic acid-triggered changes in the glutathione transferases and peroxidases are key factors in the successful salt stress acclimation of Arabidopsis thaliana. Functional Plant Biology, 2015, 42, 1129.	2.1	48

JolÃin CsiszÃir

#	Article	IF	CITATIONS
19	Plant glutathione peroxidases: Emerging role of the antioxidant enzymes in plant development and stress responses. Journal of Plant Physiology, 2015, 176, 192-201.	3.5	284
20	Hardening with salicylic acid induces concentration-dependent changes in abscisic acid biosynthesis of tomato under salt stress. Journal of Plant Physiology, 2015, 183, 54-63.	3.5	64
21	The Alleviation of the Adverse Effects of Salt Stress in the Tomato Plant by Salicylic Acid Shows A Time- and Organ-Specific Antioxidant Response. Acta Biologica Cracoviensia Series Botanica, 2015, 57, 21-30.	0.5	20
22	Phenotyping shows improved physiological traits and seed yield of transgenic wheat plants expressing the alfalfa aldose reductase under permanent drought stress. Acta Physiologiae Plantarum, 2014, 36, 663-673.	2.1	61
23	Glutathione transferase supergene family in tomato: Salt stress-regulated expression of representative genes from distinct GST classes in plants primed with salicylic acid. Plant Physiology and Biochemistry, 2014, 78, 15-26.	5.8	159
24	lsohydric and anisohydric strategies of wheat genotypes under osmotic stress: Biosynthesis and function of ABA in stress responses. Journal of Plant Physiology, 2013, 170, 1389-1399.	3.5	58
25	Different peroxidase activities and expression of abiotic stress-related peroxidases in apical root segments of wheat genotypes with different drought stress tolerance under osmotic stress. Plant Physiology and Biochemistry, 2012, 52, 119-129.	5.8	87
26	Relationship between osmotic stress-induced abscisic acid accumulation, biomass production and plant growth in drought-tolerant and -sensitive wheat cultivars. Acta Physiologiae Plantarum, 2010, 32, 719-727.	2.1	20
27	Comparison of the Drought Stress Responses of Tolerant and Sensitive Wheat Cultivars During Grain Filling: Changes in Flag Leaf Photosynthetic Activity, ABA Levels, and Grain Yield. Journal of Plant Growth Regulation, 2009, 28, 167-176.	5.1	100
28	Salicylic acid improves acclimation to salt stress by stimulating abscisic aldehyde oxidase activity and abscisic acid accumulation, and increases Na+ content in leaves without toxicity symptoms in Solanum lycopersicum L. Journal of Plant Physiology, 2009, 166, 914-925.	3.5	167
29	Glutathione transferase activity and expression patterns during grain filling in flag leaves of wheat genotypes differing in drought tolerance: Response to water deficit. Journal of Plant Physiology, 2009, 166, 1878-1891.	3.5	87
30	Duplicated <i>P5CS</i> genes of Arabidopsis play distinct roles in stress regulation and developmental control of proline biosynthesis. Plant Journal, 2008, 53, 11-28.	5.7	642
31	Changes in chlorophyll fluorescence parameters and oxidative stress responses of bush bean genotypes for selecting contrasting acclimation strategies under water stress. Acta Biologica Hungarica, 2008, 59, 335-345.	0.7	15
32	Modulation of Cu2+accumulation by (aminoethoxyvinyl)glycine and methylglyoxalbis(guanylhydrazone), the inhibitors of stress ethylene and polyamine synthesis in wheat genotypes. Cereal Research Communications, 2006, 34, 989-996.	1.6	3
33	Auxin autotrophic tobacco callus tissues resist oxidative stress: the importance of glutathione S-transferase and glutathione peroxidase activities in auxin heterotrophic and autotrophic calli. Journal of Plant Physiology, 2004, 161, 691-699.	3.5	30
34	Title is missing!. Plant Growth Regulation, 2003, 40, 121-128.	3.4	14
35	Control of the glutathione S-transferase andmas1′promoter-driven GUS activity in auxin heterotrophic and autotrophic tobacco calli by exogenous 2,4-d-induced ethylene. Physiologia Plantarum, 2001, 113, 100-107.	5.2	5