Ismail-Hakki Acir

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1076868/publications.pdf

Version: 2024-02-01

1307594 1199594 1,695 12 7 12 citations g-index h-index papers 16 16 16 2372 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	A large source of low-volatility secondary organic aerosol. Nature, 2014, 506, 476-479.	27.8	1,448
2	Effects of NO _{<i>x</i>} and SO ₂ on the secondary organic aerosol formation from photooxidation of <i>î±</i> -pinene and limonene. Atmospheric Chemistry and Physics, 2018, 18, 1611-1628.	4.9	110
3	Highly oxygenated organic molecule (HOM) formation in the isoprene oxidation by NO ₃ radical. Atmospheric Chemistry and Physics, 2021, 21, 9681-9704.	4.9	30
4	Investigation of the & t; > \hat{l}^2 & t; >-pinene photooxidation by OH in the atmosphere simulation chamber SAPHIR. Atmospheric Chemistry and Physics, 2017, 17, 6631-6650.	4.9	27
5	Evaluation of OH and HO ₂ concentrations and their budgets during photooxidation of 2-methyl-3-butene-2-ol (MBO) in the atmospheric simulation chamber SAPHIR. Atmospheric Chemistry and Physics, 2018, 18, 11409-11422.	4.9	20
6	Investigation of the & t; > \hat{l} ±& t; >-pinene photooxidation by OH in the atmospheric simulation chamber SAPHIR. Atmospheric Chemistry and Physics, 2019, 19, 11635-11649.	4.9	17
7	Highly Oxygenated Organic Nitrates Formed from NO ₃ Radical-Initiated Oxidation of β-Pinene. Environmental Science & Environmental Science	10.0	17
8	Dual sensor measurement shows that temperature outperforms pH as an early sign of aerobic deterioration in maize silage. Scientific Reports, 2021, 11, 8686.	3.3	8
9	Enantioselective separation of defined endocrine-disrupting nonylphenol isomers. Analytical and Bioanalytical Chemistry, 2016, 408, 5601-5607.	3.7	7
10	Atmospheric photo-oxidation of myrcene: OH reaction rate constant, gas-phase oxidation products and radical budgets. Atmospheric Chemistry and Physics, 2021, 21, 16067-16091.	4.9	4
11	An automatic smart measurement system with signal decomposition to partition dual-source CO2 flux from maize silage. Sensors and Actuators B: Chemical, 2019, 300, 127053.	7.8	3

Investigation of the limonene photooxidation by OH at different NO concentrations in the atmospheric simulation chamber SAPHIR (Simulation of Atmospheric Photochemistry In a large) Tj ETQq0 0 0 rgBT 40 werlock 10 Tf 50 2