Teruna J Siahaan

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1076819/publications.pdf

Version: 2024-02-01

109321 123424 4,680 154 35 61 citations h-index g-index papers 160 160 160 5395 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Inhibition of LFA-1/ICAM-1 and VLA-4/VCAM-1 as a therapeutic approach to inflammation and autoimmune diseases. Medicinal Research Reviews, 2002, 22, 146-167.	10.5	339
2	The Role of Thiols and Disulfides on Protein Stability. Current Protein and Peptide Science, 2009, 10, 614-625.	1.4	317
3	PLGA Nanoparticleâ^Peptide Conjugate Effectively Targets Intercellular Cell-Adhesion Molecule-1. Bioconjugate Chemistry, 2008, 19, 145-152.	3.6	176
4	ICAM-1 targeting of doxorubicin-loaded PLGA nanoparticles to lung epithelial cells. European Journal of Pharmaceutical Sciences, 2009, 37, 141-150.	4.0	161
5	Solution stability of linear vs. cyclic RGD peptides. Chemical Biology and Drug Design, 1999, 53, 530-541.	1.1	160
6	Doxorubicin-loaded iron oxide nanoparticles for glioblastoma therapy: a combinational approach for enhanced delivery of nanoparticles. Scientific Reports, 2020, 10, 11292.	3.3	160
7	Targeting ICAM-1/LFA-1 interaction for controlling autoimmune diseases: designing peptide and small molecule inhibitors. Peptides, 2003, 24, 487-501.	2.4	126
8	Peptideâ€mediated targeted drug delivery. Medicinal Research Reviews, 2012, 32, 637-658.	10.5	122
9	Cell Adhesion Molecules for Targeted Drug Delivery. Journal of Pharmaceutical Sciences, 2006, 95, 1856-1872.	3.3	108
10	Pathways and progress in improving drug delivery through the intestinal mucosa and blood–brain barriers. Therapeutic Delivery, 2014, 5, 1143-1163.	2.2	99
11	Effect of restricted conformational flexibility on the permeation of model hexapeptides across Caco-2 cell monolayers. Pharmaceutical Research, 1997, 14, 169-175.	3.5	83
12	Controlling Ligand Surface Density Optimizes Nanoparticle Binding to ICAM-1. Journal of Pharmaceutical Sciences, 2011, 100, 1045-1056.	3.3	78
13	Protein PEGylation for cancer therapy: bench to bedside. Journal of Cell Communication and Signaling, 2019, 13, 319-330.	3.4	76
14	The effect of beta-turn structure on the passive diffusion of peptides across Caco-2 cell monolayers. Pharmaceutical Research, 1997, 14, 1332-1340.	3.5	75
15	VEGF-A stimulation of leukocyte adhesion to colonic microvascular endothelium: implications for inflammatory bowel disease. American Journal of Physiology - Renal Physiology, 2006, 290, G648-G654.	3.4	72
16	Vaccine-like Controlled-Release Delivery of an Immunomodulating Peptide To Treat Experimental Autoimmune Encephalomyelitis. Molecular Pharmaceutics, 2012, 9, 979-985.	4.6	65
17	Esterase-sensitive cyclic prodrugs of peptides: evaluation of an acyloxyalkoxy promoiety in a model hexapeptide. Pharmaceutical Research, 1996, 13, 1615-1623.	3.5	62
18	Molecular Structure of the Apical Junction Complex and Its Contribution to the Paracellular Barrier. Journal of Pharmaceutical Sciences, 1997, 86, 977-984.	3.3	55

#	Article	lF	Citations
19	Improving the selectivity of HAV-peptides in modulating E-cadherin-E-cadherin interactions in the intercellular junction of MDCK cell monolayers. Pharmaceutical Research, 2001, 18, 446-453.	3.5	55
20	Linear and cyclic LFA-1 and ICAM-1 peptides inhibit T cell adhesion and function. Peptides, 2000, 21, $1161-1167$.	2.4	52
21	Synthesis of a Novel Esterase-Sensitive Cyclic Prodrug System for Peptides That Utilizes a "Trimethyl Lock―Facilitated Lactonization Reaction. Journal of Organic Chemistry, 1997, 62, 1363-1367.	3.2	51
22	Increasing paracellular porosity by E-cadherin peptides: discovery of bulge and groove regions in the EC1-domain of E-cadherin. Pharmaceutical Research, 2002, 19, 1170-1179.	3.5	51
23	Modulation of cellular adhesion in bovine brain microvessel endothelial cells by a decapeptide. Brain Research, 1997, 747, 103-113.	2.2	50
24	Synthesis of a Novel Esterase-Sensitive Cyclic Prodrug of a Hexapeptide Using an (Acyloxy)alkoxy Promoiety. Journal of Organic Chemistry, 1997, 62, 1356-1362.	3.2	48
25	The effect of conformation on membrane permeability of an acyloxyalkoxy-linked cyclic prodrug of a model hexapeptide. Pharmaceutical Research, 1996, 13, 1657-1662.	3.5	45
26	Adhesion of pancreatic beta cells to biopolymer films. Biopolymers, 2009, 91, 676-685.	2.4	44
27	Enhancement of Drug Absorption through the Bloodâ [*] Brain Barrier and Inhibition of Intercellular Tight Junction Resealing by E-Cadherin Peptides. Molecular Pharmaceutics, 2011, 8, 239-249.	4.6	44
28	Acyloxyalkoxy-based cyclic prodrugs of opioid peptides: evaluation of the chemical and enzymatic stability as well as their transport properties across Caco-2 cell monolayers. Pharmaceutical Research, 1999, 16, 24-29.	3.5	43
29	Modulation of Blood–Brain Barrier Permeability in Mice Using Synthetic E-Cadherin Peptide. Molecular Pharmaceutics, 2014, 11, 974-981.	4.6	42
30	PEPTIDES DERIVED FROM ICAM-1 AND LFA-1 MODULATE T CELL ADHESION AND IMMUNE FUNCTION IN A MIXED LYMPHOCYTE CULTURE1. Transplantation, 1999, 68, 685-692.	1.0	41
31	Structure and Function of the Intercellular Junctions: Barrier of Paracellular Drug Delivery. Current Pharmaceutical Design, 2006, 12, 2813-2824.	1.9	40
32	Antigen-Specific Suppression of Experimental Autoimmune Encephalomyelitis by a Novel Bifunctional Peptide Inhibitor. Journal of Pharmacology and Experimental Therapeutics, 2007, 322, 879-886.	2.5	40
33	Modulation of Intercellular Junctions by Cyclic-ADT Peptides as a Method to Reversibly Increase Blood–Brain Barrier Permeability. Journal of Pharmaceutical Sciences, 2015, 104, 1065-1075.	3.3	39
34	Calcium Condensed LABL-TAT Complexes Effectively Target Gene Delivery to ICAM-1 Expressing Cells. Molecular Pharmaceutics, 2011, 8, 788-798.	4.6	38
35	Separation and Analysis of Peptides and Proteins. Analytical Chemistry, 1997, 69, 29-58.	6.5	36
36	Binding and internalization of an LFA-1-derived cyclic peptide by ICAM receptors on activated lymphocyte: a potential ligand for drug targeting to ICAM-1-expressing cells., 2001, 18, 329-335.		36

#	Article	IF	CITATIONS
37	Mechanism of binding and internalization of ICAM-1-derived cyclic peptides by LFA-1 on the surface of T cells: a potential method for targeted drug delivery. Pharmaceutical Research, 2003, 20, 1523-1532.	3.5	35
38	Codelivery of antigen and an immune cell adhesion inhibitor is necessary for efficacy of soluble antigen arrays in experimental autoimmune encephalomyelitis. Molecular Therapy - Methods and Clinical Development, 2014, 1, 14008.	4.1	35
39	Modulation of Melphalan Resistance in Glioma Cells with a Peripheral Benzodiazepine Receptor Ligandâ^'Melphalan Conjugate. Journal of Medicinal Chemistry, 1997, 40, 1726-1730.	6.4	32
40	Immune modulating peptides for the treatment and suppression of multiple sclerosis. Clinical Immunology, 2012, 144, 127-138.	3.2	30
41	Single-step grafting of aminooxy-peptides to hyaluronan: A simple approach to multifunctional therapeutics for experimental autoimmune encephalomyelitis. Journal of Controlled Release, 2013, 168, 334-340.	9.9	30
42	Comparison of Linear and Cyclic His-Ala-Val Peptides in Modulating the Blood-Brain Barrier Permeability: Impact on Delivery of Molecules to the Brain. Journal of Pharmaceutical Sciences, 2016, 105, 797-807.	3.3	30
43	Suppression of Type 1 Diabetes in NOD Mice by Bifunctional Peptide Inhibitor: Modulation of the Immunological Synapse Formation. Chemical Biology and Drug Design, 2007, 70, 227-236.	3.2	29
44	Inhibition of the adherence of T-lymphocytes to epithelial cells by a cyclic peptide derived from inserted domain of lymphocyte function-associated antigen-1. Inflammation, 2001, 25, 203-214.	3.8	28
45	Suppression of EAE and prevention of blood–brain barrier breakdown after vaccination with novel bifunctional peptide inhibitor. Neuropharmacology, 2012, 62, 1874-1881.	4.1	28
46	Antigenâ€specific blocking of CD4â€Specific immunological synapse formation using BPI and current therapies for autoimmune diseases. Medicinal Research Reviews, 2012, 32, 727-764.	10.5	28
47	Endotoxaemia-augmented murine venous thrombosis is dependent on TLR-4 and ICAM-1, and potentiated by neutropenia. Thrombosis and Haemostasis, 2017, 117, 339-348.	3.4	28
48	Prophylactic and therapeutic suppression of experimental autoimmune encephalomyelitis by a novel bifunctional peptide inhibitor. Clinical Immunology, 2008, 129, 69-79.	3.2	26
49	Structure, Size, and Solubility of Antigen Arrays Determines Efficacy in Experimental Autoimmune Encephalomyelitis. AAPS Journal, 2014, 16, 1185-1193.	4.4	26
50	Co-Delivery of Autoantigen and B7 Pathway Modulators Suppresses Experimental Autoimmune Encephalomyelitis. AAPS Journal, 2014, 16, 1204-1213.	4.4	26
51	Improving Brain Delivery of Biomolecules via BBB Modulation in Mouse and Rat: Detection using MRI, NIRF, and Mass Spectrometry. Nanotheranostics, 2017, 1, 217-231.	5.2	26
52	A modified coumarinic acid-based cyclic prodrug of an opioid peptide: its enzymatic and chemical stability and cell permeation characteristics. Pharmaceutical Research, 2002, 19, 794-801.	3.5	25
53	Immune response to controlled release of immunomodulating peptides in a murine experimental autoimmune encephalomyelitis (EAE) model. Journal of Controlled Release, 2010, 141, 145-152.	9.9	25
54	Solution Structure of a Cyclic RGD Peptide That Inhibits Platelet Aggregation. Journal of Biomolecular Structure and Dynamics, 1996, 14, 1-11.	3.5	24

#	Article	IF	CITATIONS
55	Modulation of the Cellular Junction Protein E-Cadherin in Bovine Brain Microvessel Endothelial Cells by Cadherin Peptides. Drug Delivery, 1997, 4, 187-193.	5.7	24
56	Inhibition of E-Cadherin-Mediated Homotypic Adhesion of Caco-2 Cells: A Novel Evaluation Assay for Peptide Activities in Modulating Cell-Cell Adhesion. Journal of Pharmacology and Experimental Therapeutics, 2006, 317, 309-316.	2.5	24
57	Synergistic inhibitory activity of \hat{l} ±- and \hat{l}^2 -LFA-1 peptides on LFA-1/ICAM-1 interaction. Peptides, 2001, 22, 1955-1962.	2.4	23
58	ICAMâ€1 Peptide Inhibitors of Tâ€cell Adhesion bind to the allosteric site of LFAâ€1. An NMR Characterization. Chemical Biology and Drug Design, 2007, 70, 347-353.	3.2	23
59	Antigen-Specific Suppression of Experimental Autoimmune Encephalomyelitis by a Novel Bifunctional Peptide Inhibitor: Structure Optimization and Pharmacokinetics. Journal of Pharmacology and Experimental Therapeutics, 2010, 332, 1136-1145.	2.5	23
60	Inhibition of ICAM-1/LFA-1-mediated heterotypic T-cell adhesion to epithelial cells: design of ICAM-1 cyclic peptides. Bioorganic and Medicinal Chemistry Letters, 2004, 14, 1399-1402.	2.2	22
61	Nanoparticles Targeting Dendritic Cell Surface Molecules Effectively Block T Cell Conjugation and Shift Response. ACS Nano, 2011, 5, 1693-1702.	14.6	22
62	Influence of particle size, an elongated particle geometry, and adjuvants on dendritic cell activation. European Journal of Pharmaceutics and Biopharmaceutics, 2015, 94, 542-549.	4.3	21
63	Rapid Determination of Substrate Specificity of Clostridium histolyticum \hat{l}^2 -Collagenase Using an Immobilized Peptide Library. Journal of Biological Chemistry, 2002, 277, 8366-8371.	3.4	20
64	\hat{l}_{\pm} L-Integrin I domain cyclic peptide antagonist selectively inhibits T cell adhesion to pancreatic islet microvascular endothelium. American Journal of Physiology - Renal Physiology, 2005, 288, G67-G73.	3.4	20
65	Characterization of Binding Properties of ICAM-1 Peptides to LFA-1: Inhibitors of T-cell Adhesion. Chemical Biology and Drug Design, 2006, 68, 20-28.	3.2	20
66	Mechanism of Internalization of an ICAM-1-Derived Peptide by Human Leukemic Cell Line HL-60: Influence of Physicochemical Properties on Targeted Drug Delivery. Molecular Pharmaceutics, 2007, 4, 749-758.	4.6	20
67	Evaluation of the physical stability of the EC5 domain of E-cadherin: Effects of pH, temperature, ionic strength, and disulfide bonds. Journal of Pharmaceutical Sciences, 2009, 98, 63-73.	3.3	20
68	Autoimmune therapies targeting costimulation and emerging trends in multivalent therapeutics. Therapeutic Delivery, 2011, 2, 873-889.	2.2	20
69	Structural and ICAM-1-Docking Properties of a Cyclic Peptide from the I-domain of LFA-1: An inhibitor of ICAM-1/LFA-1-mediated T-cell adhesion. Journal of Biomolecular Structure and Dynamics, 2002, 19, 789-799.	3.5	19
70	Inhibition of homotypic adhesion of Tâ€cells: secondary structure of an ICAMâ€1â€derived cyclic peptide. Chemical Biology and Drug Design, 1997, 49, 517-526.	1.1	19
71	Disulfide Bond Formation Promotes the cis- and trans-Dimerization of the E-cadherin-derived First Repeat. Journal of Biological Chemistry, 2002, 277, 16002-16010.	3.4	18
72	Synthesis and chemical stability of a disulfide bond in a model cyclic pentapeptide: Cyclo(1,4)â€Cysâ€Glyâ€Pheâ€Cysâ€Glyâ€OH. Journal of Pharmaceutical Sciences, 2006, 95, 2222-2234.	3.3	18

#	Article	IF	CITATIONS
73	The importance of structural factors on the rate and the extent of N,O-acyl migration in cyclic and linear peptides. Pharmaceutical Research, 1995, 12, 323-328.	3.5	17
74	Suppression of MOG- and PLP-induced experimental autoimmune encephalomyelitis using a novel multivalent bifunctional peptide inhibitor. Journal of Neuroimmunology, 2013, 263, 20-27.	2.3	17
7 5	Brain Delivery of Drug and MRI Contrast Agent: Detection and Quantitative Determination of Brain Deposition of CPT-Glu Using LC–MS/MS and Gd-DTPA Using Magnetic Resonance Imaging. Molecular Pharmaceutics, 2016, 13, 379-390.	4.6	17
76	Probing the interaction between cHAVc3 peptide and the EC1 domain of E-cadherin using NMR and molecular dynamics simulations. Journal of Biomolecular Structure and Dynamics, 2017, 35, 92-104.	3.5	17
77	Derivatives of Melphalan Designed to Enhance Drug Accumulation in Cancer Cells. Journal of Drug Targeting, 1997, 4, 359-370.	4.4	16
78	Synthesis of a novel cyclic prodrug of RGD peptidomimetic to improve its cell membrane permeation. Bioorganic Chemistry, 2002, 30, 285-301.	4.1	16
79	Effects of Amino Acid Chirality and the Chemical Linker on the Cell Permeation Characteristics of Cyclic Prodrugs of Opioid Peptides. Journal of Medicinal Chemistry, 2006, 49, 1261-1270.	6.4	16
80	Hyaluronic Acid Graft Polymers Displaying Peptide Antigen Modulate Dendritic Cell Response in Vitro. Molecular Pharmaceutics, 2014, 11, 367-373.	4.6	16
81	Rapid Identification of Fluorochrome Modification Sites in Proteins by LC ESI-Q-TOF Mass Spectrometry. Bioconjugate Chemistry, 2011, 22, 1330-1336.	3.6	15
82	Methotrexate disposition, anti-folate activity and efficacy in the collagen-induced arthritis mouse model. European Journal of Pharmacology, 2019, 853, 264-274.	3.5	15
83	Design, structure and biological activity of \hat{l}^2 -turn peptides of CD2 protein for inhibition of T-cell adhesion. FEBS Journal, 2004, 271, 2873-2886.	0.2	14
84	Sequence Recognition of <i>α</i> â€LFAâ€1â€derived Peptides by ICAMâ€1 Cell Receptors: Inhibitors of Tâ€cell Adhesion. Chemical Biology and Drug Design, 2007, 70, 237-246.	3.2	14
85	cIBR Effectively Targets Nanoparticles to LFA-1 on Acute Lymphoblastic T Cells. Molecular Pharmaceutics, 2010, 7, 146-155.	4.6	14
86	Improving In Vivo Brain Delivery of Monoclonal Antibody Using Novel Cyclic Peptides. Pharmaceutics, 2019, 11, 568.	4.5	14
87	Orf239342 from the mushroom Agaricus bisporus is a mannose binding protein. Biochemical and Biophysical Research Communications, 2019, 515, 99-103.	2.1	14
88	Noninvasive Brain Delivery and Efficacy of BDNF to Stimulate Neuroregeneration and Suppression of Disease Relapse in EAE Mice. Molecular Pharmaceutics, 2020, 17, 404-416.	4.6	14
89	Non-invasive Brain Delivery and Efficacy of BDNF in APP/PS1 Transgenic Mice. Medical Research Archives, 2020, 8, .	0.2	14
90	Steric hindrance is a key factor in the coupling reaction of (acyloxy) alkyl-î±-halides with phenols to make a new promoiety for prodrugs. Tetrahedron Letters, 2002, 43, 577-579.	1.4	13

#	Article	IF	CITATIONS
91	Utilization of I-domain of LFA-1 to Target Drug and Marker Molecules to Leukocytes. Theranostics, 2011, 1, 277-289.	10.0	13
92	Methotrexate (MTX)–cIBR Conjugate for Targeting MTX to Leukocytes: Conjugate Stability and In Vivo Efficacy in Suppressing Rheumatoid Arthritis. Journal of Pharmaceutical Sciences, 2012, 101, 3275-3291.	3.3	13
93	Validation of Cadherin HAV6 Peptide in the Transient Modulation of the Blood-Brain Barrier for the Treatment of Brain Tumors. Pharmaceutics, 2019, 11, 481.	4.5	13
94	Conjugates of Cell Adhesion Peptides for Therapeutics and Diagnostics Against Cancer and Autoimmune Diseases. Current Topics in Medicinal Chemistry, 2018, 17, 3425-3443.	2.1	13
95	Synthesis of Cyclic Prodrugs of Aggrastat and Its Analogue with a Modified Phenylpropionic Acid Linker. Organic Letters, 2002, 4, 549-552.	4.6	12
96	Peptides and Drug Delivery. Advances in Experimental Medicine and Biology, 2017, 1030, 167-184.	1.6	12
97	Secondary Structure of the HAV Peptide Which Regulates Cadherin-Cadherin Interaction. Journal of Biomolecular Structure and Dynamics, 1995, 13, 447-455.	3.5	11
98	Conjugation with L-Glutamate forin vivoBrain Drug Delivery. Journal of Drug Targeting, 2001, 9, 23-37.	4.4	11
99	Effect of Modification of the Physicochemical Properties of ICAM-1-Derived Peptides on Internalization and Intracellular Distribution in the Human Leukemic Cell Line HL-60. Molecular Pharmaceutics, 2009, 6, 396-406.	4.6	11
100	The Role of Covalent Dimerization on the Physical and Chemical Stability of the EC1 Domain of Human E-Cadherin. Journal of Pharmaceutical Sciences, 2009, 98, 3562-3574.	3.3	11
101	Characterization of Multiple Stable Conformers of the EC5 Domain of Eâ€cadherin and the Interaction of EC5 with Eâ€cadherin Peptides. Chemical Biology and Drug Design, 2009, 73, 584-598.	3.2	11
102	Deamidation of model \hat{l}^2 -turn cyclic peptides in the solid state. Journal of Pharmaceutical Sciences, 2005, 94, 2616-2631.	3.3	10
103	Pulmonary Drug Delivery: Pharmaceutical Chemistry and Aerosol Technology. , 2005, , 341-361.		10
104	Structural Modifications of ICAM‹ Cyclic Peptides to Improve the Activity to Inhibit Heterotypic Adhesion of T cells. Chemical Biology and Drug Design, 2008, 72, 27-33.	3.2	10
105	Immune Tolerance Induction against Experimental Autoimmune Encephalomyelitis (EAE) Using A New PLP-B7AP Conjugate that Simultaneously Targets B7/CD28 Costimulatory Signal and TCR/MHC-II Signal. Journal of Multiple Sclerosis, 2014, 02, .	0.1	10
106	Comparison of the Solution Conformations of a Cell-Adhesive Peptide LBE and its Reverse Sequence EBL. Journal of Biomolecular Structure and Dynamics, 1999, 17, 429-444.	3.5	9
107	Oral Protein and Peptide Drug Delivery. , 2005, , 189-200.		9
108	A Peptide from the Betaâ€strand Region of CD2 Protein that Inhibits Cell Adhesion and Suppresses Arthritis in a Mouse Model. Chemical Biology and Drug Design, 2010, 76, 234-244.	3.2	9

#	Article	IF	CITATIONS
109	Controlling immune response and demyelination using highly potent bifunctional peptide inhibitors in the suppression of experimental autoimmune encephalomyelitis. Clinical and Experimental Immunology, 2013, 172, 23-36.	2.6	9
110	In Vivo Brain Delivery and Brain Deposition of Proteins with Various Sizes. Molecular Pharmaceutics, 2019, 16, 4878-4889.	4.6	9
111	Synthesis and stability study of a modified phenylpropionic acid linker-based esterase-sensitive prodrug. Bioorganic and Medicinal Chemistry Letters, 2002, 12, 3439-3442.	2.2	8
112	Modulation of Cell Adhesion Molecules in Various Epithelial Cell Lines after Treatment with PP2â€. Molecular Pharmaceutics, 2005, 2, 170-184.	4.6	8
113	Gram-Negative Pneumonia Alters Large-Vein Cell-Adhesion Molecule Profile and Potentiates Experimental Stasis Venous Thrombosis. Journal of Vascular Research, 2016, 53, 186-195.	1.4	8
114	Synthesis of a Bifunctional Peptide Inhibitor–IgG1 Fc Fusion That Suppresses Experimental Autoimmune Encephalomyelitis. Bioconjugate Chemistry, 2017, 28, 1867-1877.	3.6	8
115	A Peptide Derived from LFA-1 Protein that Modulates T-cell Adhesion Binds to Soluble ICAM-1 Protein. Journal of Biomolecular Structure and Dynamics, 2003, 20, 635-644.	3.5	7
116	Factors That Impact the Developability of Drug Candidates: An Overview., 2005,, 1-14.		7
117	Liposomes as Drug Delivery Vehicles. , 2005, , 411-434.		7
118	The aqueous conformation of cyclo(1,6)Acâ€Cysâ€Argâ€Glyâ€Aspâ€Pheâ€Penâ€NH ₂ . International of Peptide and Protein Research, 1994, 44, 427-434.	Journal 0.1	7
119	Localized production of human E-cadherin-derived first repeat in Escherichia coli. Protein Expression and Purification, 2002, 26, 449-454.	1.3	6
120	N-cadherin involvement in the heterotypic adherence of malignant T-cells to epithelia. Molecular and Cellular Biochemistry, 2002, 233, 1-8.	3.1	6
121	Reductive Alkylation of Lipase: Experimental and Molecular Modeling Approaches. Applied Biochemistry and Biotechnology, 2004, 118, 011-020.	2.9	6
122	Effects of An E-cadherin-Derived Peptide on the Gene Expression of Caco-2 Cells. Pharmaceutical Research, 2004, 21, 2085-2094.	3.5	6
123	Prodrug Approaches to Drug Delivery. , 2005, , 125-165.		6
124	I-Domain-Antigen Conjugate (IDAC) for Delivering Antigenic Peptides to APC: Synthesis, Characterization, and in Vivo EAE Suppression. Bioconjugate Chemistry, 2012, 23, 509-517.	3.6	6
125	Improving the stability of the EC1 domain of E-cadherin by thiol alkylation of the cysteine residue. International Journal of Pharmaceutics, 2012, 431, 16-25.	5.2	6
126	Peptide Delivery., 2013,, 1702-1710.		6

#	Article	IF	CITATIONS
127	Bifunctional Peptide Inhibitors Suppress Interleukin-6 Proliferation and Ameliorates Murine Collagen-Induced Arthritis. Journal of Clinical & Cellular Immunology, 2014, 05, .	1.5	6
128	Synthesis and comparison of physicochemical, transport, and antithrombic properties of a cyclic prodrug and the parent RGD peptidomimetic. Tetrahedron, 2003, 59, 2861-2869.	1.9	5
129	Ultrasound-Mediated Drug Delivery. , 2005, , 245-278.		4
130	Physiological, Biochemical, and Chemical Barriers to Oral Drug Delivery., 2005,, 15-27.		4
131	Vaccinelike and Prophylactic Treatments of EAE with Novel I-Domain Antigen Conjugates (IDAC): Targeting Multiple Antigenic Peptides to APC. Molecular Pharmaceutics, 2013, 10, 297-306.	4.6	4
132	1H, 13C and 15N backbone assignment of the EC-1 domain of human E-cadherin. Biomolecular NMR Assignments, 2015, 9, 31-35.	0.8	4
133	A Tribute to Ronald T. Borchardt—Teacher, Mentor, Scientist, Colleague, Leader, Friend, and Family Man. Journal of Pharmaceutical Sciences, 2016, 105, 370-385.	3.3	4
134	Expression, purification, and structural study of the EC4 domain of E-cadherin. Protein Expression and Purification, 2004, 33, 72-79.	1.3	3
135	Efflux Transporters in Drug Excretion. , 2005, , 381-410.		3
136	Pathways for Drug Delivery to the Central Nervous System. , 2005, , 29-56.		3
137	Receptor-Mediated Drug Delivery. , 2005, , 167-187.		3
138	Solution structure of a novel Tâ€cell adhesion inhibitor derived from the fragment of ICAMâ€1 receptor: Cyclo(1,8)â€Cysâ€Proâ€Argâ€Glyâ€Glyâ€Serâ€Valâ€Cys. Biopolymers, 2009, 91, 633-641.	2.4	3
139	Conformational analysis of cyclo(2,9)â€Acâ€QCRSVEGSCGâ€OH from the <i>C</i> à€terminal loop of human growth hormone. Chemical Biology and Drug Design, 1997, 49, 15-22.	1.1	3
140	Gene Therapy and Gene Delivery. , 2005, , 305-319.		2
141	Methods of Delivering Molecules Through the Blood-Brain Barrier for Brain Diagnostics and Therapeutics. Neuromethods, 2019, , 9-43.	0.3	2
142	Enhancing Intestinal Absorption of a Model Macromolecule via the Paracellular Pathway using E-Cadherin Peptides. Journal of Pharmaceutical Sciences, 2021, 110, 2139-2148.	3.3	2
143	Antibody-Directed Drug Delivery. , 2005, , 363-379.		1
144	Regulatory and Intellectual Property Issues in Drug Delivery Research., 2005,, 435-442.		1

#	ARTICLE	IF	CITATIONS
145	Physicochemical Properties, Formulation, and Drug Delivery. , 2005, , 57-71.		1
146	Parenteral Formulation for Peptides, Proteins, and Monoclonal Antibodies Drugs: A Commercial Development Overview., 2005,, 321-339.		0
147	Metabolic Activation and Drug Targeting. , 2005, , 201-244.		0
148	Polycationic Peptides and Proteins in Drug Delivery: Focus on Nonclassical Transport., 2005,, 279-304.		0
149	Targeted Bioavailability: A Fresh Look at Pharmacokinetic and Pharmacodynamic Issues in Drug Delivery. , 2005, , 73-82.		0
150	Presystemic and First-Pass Metabolism., 2005,, 83-101.		0
151	Cell Culture Models for Drug Transport Studies. , 2005, , 103-124.		0
152	ICAM-1 Peptide Inhibitors of T-cell Adhesion bind to the allosteric site of LFA-1. An NMR Characterization. Chemical Biology and Drug Design, 2007, .	3.2	0
153	Cadherin peptideâ€induced enhancement of blood brain barrier (BBB) permeability. FASEB Journal, 2013, 27, 668.3.	0.5	0
154	Abstract 191: Endothelial Dysfunction Potentiates Deep Venous Thrombosis in a Mouse Model of Sepsis. Arteriosclerosis, Thrombosis, and Vascular Biology, 2014, 34, .	2.4	0