Junhua Li

List of Publications by Citations

Source: https://exaly.com/author-pdf/1076327/junhua-li-publications-by-citations.pdf

Version: 2024-04-18

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

18,304 126 284 75 h-index g-index citations papers 22,403 299 7.23 9.5 L-index avg, IF ext. papers ext. citations

#	Paper	IF	Citations
284	Low-temperature selective catalytic reduction of NOx with NH3 over metal oxide and zeolite catalysts <i>A</i> review. <i>Catalysis Today</i> , 2011 , 175, 147-156	5.3	699
283	Drivers of improved PM air quality in China from 2013 to 2017. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2019 , 116, 24463-24469	11.5	578
282	DRIFT study on cerium-tungsten/titania catalyst for selective catalytic reduction of NOx with NH3. <i>Environmental Science & amp; Technology, 2010</i> , 44, 9590-6	10.3	532
281	Promotional Effect of Ce-doped V2O5-WO3/TiO2 with Low Vanadium Loadings for Selective Catalytic Reduction of NOx by NH3. <i>Journal of Physical Chemistry C</i> , 2009 , 113, 21177-21184	3.8	380
280	Low temperature selective catalytic reduction of NO with NH3 over MnHe spinel: Performance, mechanism and kinetic study. <i>Applied Catalysis B: Environmental</i> , 2011 , 110, 71-80	21.8	344
279	Comparison of the performance for oxidation of formaldehyde on nano-Co3O4, 2D-Co3O4, and 3D-Co3O4 catalysts. <i>Applied Catalysis B: Environmental</i> , 2013 , 142-143, 677-683	21.8	316
278	Improvement of activity and SOItolerance of Sn-modified MnOx-CeOItatalysts for NHESCR at low temperatures. <i>Environmental Science & Environmental Scie</i>	10.3	307
277	Promoting effect of MoO3 on the NOx reduction by NH3 over CeO2/TiO2 catalyst studied with in situ DRIFTS. <i>Applied Catalysis B: Environmental</i> , 2014 , 144, 90-95	21.8	297
276	Novel Mn-Ce-Ti mixed-oxide catalyst for the selective catalytic reduction of NOx with NHIACS Applied Materials & amp; Interfaces, 2014 , 6, 14500-8	9.5	295
275	The poisoning effect of alkali metals doping over nano V2O5WO3/TiO2 catalysts on selective catalytic reduction of NOx by NH3. <i>Chemical Engineering Journal</i> , 2011 , 170, 531-537	14.7	280
274	Enhanced activity of tungsten modified CeO2/TiO2 for selective catalytic reduction of NOx with ammonia. <i>Catalysis Today</i> , 2010 , 153, 77-83	5.3	274
273	Positive Effects of K+ Ions on Three-Dimensional Mesoporous Ag/Co3O4 Catalyst for HCHO Oxidation. <i>ACS Catalysis</i> , 2014 , 4, 2753-2762	13.1	260
272	Characterization of commercial Cu-SSZ-13 and Cu-SAPO-34 catalysts with hydrothermal treatment for NH3-SCR of NOx in diesel exhaust. <i>Chemical Engineering Journal</i> , 2013 , 225, 323-330	14.7	239
271	Novel effect of SO2 on the SCR reaction over CeO2: Mechanism and significance. <i>Applied Catalysis B: Environmental</i> , 2013 , 136-137, 19-28	21.8	236
270	Identification of the active sites on CeO2IMO3 catalysts for SCR of NOx with NH3: An in situ IR and Raman spectroscopy study. <i>Applied Catalysis B: Environmental</i> , 2013 , 140-141, 483-492	21.8	229
269	In situ DRIFTS and temperature-programmed technology study on NH3-SCR of NOx over Cu-SSZ-13 and Cu-SAPO-34 catalysts. <i>Applied Catalysis B: Environmental</i> , 2014 , 156-157, 428-437	21.8	227
268	Catalytically active single-atom sites fabricated from silver particles. <i>Angewandte Chemie - International Edition</i> , 2012 , 51, 4198-203	16.4	224

(2016-2010)

267	Origination of N2O from NO reduction by NH3 over EMnO2 and EMn2O3. <i>Applied Catalysis B: Environmental</i> , 2010 , 99, 156-162	21.8	215
266	Low temperature selective catalytic reduction of NO with NH3 over amorphous MnO catalysts prepared by three methods. <i>Catalysis Communications</i> , 2007 , 8, 329-334	3.2	208
265	Enhancement of activity and sulfur resistance of CeO2 supported on TiO2-SiO2 for the selective catalytic reduction of NO by NH3. <i>Environmental Science & Environmental Scienc</i>	10.3	203
264	Relationship between structure and performance of a novel cerium-niobium binary oxide catalyst for selective catalytic reduction of NO with NH3. <i>Applied Catalysis B: Environmental</i> , 2013 , 142-143, 290-	- 297 8	200
263	Hierarchical CoreBhell Al2O3@Pd-CoAlO Microspheres for Low-Temperature Toluene Combustion. <i>ACS Catalysis</i> , 2016 , 6, 3433-3441	13.1	188
262	A Facile Method for in Situ Preparation of the MnO2/LaMnO3 Catalyst for the Removal of Toluene. <i>Environmental Science & Environmental Science & Envir</i>	10.3	184
261	Alkali metal poisoning of a CeO2-WO3 catalyst used in the selective catalytic reduction of NOx with NH3: an experimental and theoretical study. <i>Environmental Science & Environmental Science & Envir</i>	10.3	173
260	Removal of Antimonite (Sb(III)) and Antimonate (Sb(V)) from Aqueous Solution Using Carbon Nanofibers That Are Decorated with Zirconium Oxide (ZrO2). <i>Environmental Science & amp; Technology</i> , 2015 , 49, 11115-24	10.3	168
259	Effects of precursors on the surface Mn species and the activities for NO reduction over MnO /TiO2 catalysts. <i>Catalysis Communications</i> , 2007 , 8, 1896-1900	3.2	166
258	Novel V2O5¶eO2/TiO2 catalyst with low vanadium loading for the selective catalytic reduction of NOx by NH3. <i>Applied Catalysis B: Environmental</i> , 2014 , 158-159, 11-19	21.8	165
257	Recent Advances in Catalysts for Methane Combustion. <i>Catalysis Surveys From Asia</i> , 2015 , 19, 140-171	2.8	162
256	Comparative study of 日日 Band EMnO2 on toluene oxidation: Oxygen vacancies and reaction intermediates. <i>Applied Catalysis B: Environmental</i> , 2020 , 260, 118150	21.8	161
255	Mechanism of N2O formation during the low-temperature selective catalytic reduction of NO with NH3 over Mn-Fe spinel. <i>Environmental Science & Environmental Science & Environ</i>	10.3	159
254	Three-dimensionally ordered macroporous La0.6Sr0.4MnO3 with high surface areas: Active catalysts for the combustion of methane. <i>Journal of Catalysis</i> , 2013 , 307, 327-339	7.3	157
253	A superior catalyst with dual redox cycles for the selective reduction of NO(x) by ammonia. <i>Chemical Communications</i> , 2013 , 49, 7726-8	5.8	155
252	FeII is spinel for the selective catalytic reduction of NO with NH3: Mechanism and structure activity relationship. <i>Applied Catalysis B: Environmental</i> , 2012 , 117-118, 73-80	21.8	153
251	New Insight into SO Poisoning and Regeneration of CeO-WO/TiO and VO-WO/TiO Catalysts for Low-Temperature NH-SCR. <i>Environmental Science & Environmental Science & Environmenta</i>	10.3	150
250	Pdto based spinel oxides derived from pd nanoparticles immobilized on layered double hydroxides for toluene combustion. <i>Applied Catalysis B: Environmental</i> , 2016 , 181, 236-248	21.8	145

249	MnO supported on FeIIi spinel: A novel Mn based low temperature SCR catalyst with a high N2 selectivity. <i>Applied Catalysis B: Environmental</i> , 2016 , 181, 570-580	21.8	144
248	Low-temperature SCR of NO with NH3 over AC/C supported manganese-based monolithic catalysts. <i>Catalysis Today</i> , 2007 , 126, 406-411	5.3	144
247	Dispersion of tungsten oxide on SCR performance of V2O5WO3/TiO2: Acidity, surface species and catalytic activity. <i>Chemical Engineering Journal</i> , 2013 , 225, 520-527	14.7	143
246	Effect of Sn on MnO L eO2 catalyst for SCR of NO by ammonia: Enhancement of activity and remarkable resistance to SO2. <i>Catalysis Communications</i> , 2012 , 27, 54-57	3.2	137
245	Deactivation and regeneration of a commercial SCR catalyst: Comparison with alkali metals and arsenic. <i>Applied Catalysis B: Environmental</i> , 2015 , 168-169, 195-202	21.8	134
244	Effects of precursor and sulfation on OMS-2 catalyst for oxidation of ethanol and acetaldehyde at low temperatures. <i>Environmental Science & Environmental Science & Environme</i>	10.3	128
243	Selective Dissolution of A-Site Cations in ABO3 Perovskites: A New Path to High-Performance Catalysts. <i>Angewandte Chemie - International Edition</i> , 2015 , 54, 7954-7	16.4	125
242	Removal of gaseous elemental mercury over a CeO2WO3/TiO2 nanocomposite in simulated coal-fired flue gas. <i>Chemical Engineering Journal</i> , 2011 , 170, 512-517	14.7	124
241	Progress in research on catalysts for catalytic oxidation of formaldehyde. <i>Chinese Journal of Catalysis</i> , 2016 , 37, 102-122	11.3	123
240	CeO2INO3 Mixed Oxides for the Selective Catalytic Reduction of NO x by NH3 Over a Wide Temperature Range. <i>Catalysis Letters</i> , 2011 , 141, 1859-1864	2.8	123
239	Activity enhancement of WO 3 modified Fe 2 O 3 catalyst for the selective catalytic reduction of NO x by NH 3. <i>Chemical Engineering Journal</i> , 2016 , 299, 255-262	14.7	121
238	Deactivation mechanism of potassium on the VDICeOL atalysts for SCR reaction: acidity, reducibility and adsorbed-NOx. <i>Environmental Science & Environmental Science & Environ</i>	10.3	120
237	Structure Ectivity relationship of VOx/CeO2 nanorod for NO removal with ammonia. <i>Applied Catalysis B: Environmental</i> , 2014 , 144, 538-546	21.8	118
236	A high-efficiency EMnO2-like catalyst in toluene combustion. <i>Chemical Communications</i> , 2015 , 51, 14977	-8.8	115
235	Mechanism of arsenic poisoning on SCR catalyst of CeW/Ti and its novel efficient regeneration method with hydrogen. <i>Applied Catalysis B: Environmental</i> , 2016 , 184, 246-257	21.8	111
234	Three-Dimensional Ordered Mesoporous MnO2-Supported Ag Nanoparticles for Catalytic Removal of Formaldehyde. <i>Environmental Science & Environmental Sci</i>	10.3	110
233	Recent advances in the selective catalytic reduction of NOx by hydrogen in the presence of oxygen. <i>Energy and Environmental Science</i> , 2012 , 5, 8799	35.4	109
232	Catalytic Performance, Characterization, and Mechanism Study of Fe2(SO4)3/TiO2 Catalyst for Selective Catalytic Reduction of NOx by Ammonia. <i>Journal of Physical Chemistry C</i> , 2011 , 115, 7603-7612	2 3.8	107

(2016-2015)

231	A novel Cella mixed oxide catalyst for the selective catalytic reduction of NOx with NH3. <i>Applied Catalysis B: Environmental</i> , 2015 , 176-177, 338-346	21.8	104
230	The relationship between structure and activity of MoO3-CeO2 catalysts for NO removal: influences of acidity and reducibility. <i>Chemical Communications</i> , 2013 , 49, 6215-7	5.8	104
229	Mechanism of propene poisoning on Fe-ZSM-5 for selective catalytic reduction of NO(x) with ammonia. <i>Environmental Science & amp; Technology</i> , 2010 , 44, 1799-805	10.3	104
228	Shape dependence and sulfate promotion of CeO2 for selective catalytic reduction of NO with NH3. <i>Applied Catalysis B: Environmental</i> , 2018 , 232, 246-259	21.8	103
227	Design strategies for development of SCR catalyst: improvement of alkali poisoning resistance and novel regeneration method. <i>Environmental Science & Environmental Science & </i>	10.3	101
226	The effect of SiO2 on a novel CeO2IWO3/TiO2 catalyst for the selective catalytic reduction of NO with NH3. <i>Applied Catalysis B: Environmental</i> , 2013 , 140-141, 276-282	21.8	94
225	Improvement of the Activity of Fe2O3 for the Selective Catalytic Reduction of NO with NH3 at High Temperatures: NO Reduction versus NH3 Oxidization. <i>Industrial & mp; Engineering Chemistry Research</i> , 2013 , 52, 5601-5610	3.9	93
224	Novel nanowire self-assembled hierarchical CeO2 microspheres for low temperature toluene catalytic combustion. <i>Chemical Engineering Journal</i> , 2018 , 331, 425-434	14.7	89
223	Ammonia adsorption on graphene and graphene oxide: a first-principles study. <i>Frontiers of Environmental Science and Engineering</i> , 2013 , 7, 403-411	5.8	89
222	Catalytically Active Single-Atom Sites Fabricated from Silver Particles. <i>Angewandte Chemie</i> , 2012 , 124, 4274-4279	3.6	89
221	Comparison of MoO3 and WO3 on arsenic poisoning V2O5/TiO2 catalyst: DRIFTS and DFT study. <i>Applied Catalysis B: Environmental</i> , 2016 , 181, 692-698	21.8	86
220	Improvement of catalytic activity and sulfur-resistance of Ag/TiO2Al2O3 for NO reduction with propene under lean burn conditions. <i>Applied Catalysis B: Environmental</i> , 2008 , 80, 202-213	21.8	84
219	Low temperature complete combustion of methane over cobalt chromium oxides catalysts. <i>Catalysis Today</i> , 2013 , 201, 12-18	5.3	82
218	Substitution of WO3 in V2O5/WO3IIiO2 by Fe2O3 for selective catalytic reduction of NO with NH3. <i>Catalysis Science and Technology</i> , 2013 , 3, 161-168	5.5	81
217	Investigation of the Poisoning Mechanism of Lead on the CeO2-WO3 Catalyst for the NH3-SCR Reaction via in Situ IR and Raman Spectroscopy Measurement. <i>Environmental Science & Environmental Science & Technology</i> , 2016 , 50, 9576-82	10.3	81
216	Ge, Mn-doped CeO2IWO3 catalysts for NH3IBCR of NOx: Effects of SO2 and H2 regeneration. <i>Catalysis Today</i> , 2013 , 201, 139-144	5.3	80
215	Surface Tuning of La0.5Sr0.5CoO3 Perovskite Catalysts by Acetic Acid for NOx Storage and Reduction. <i>Environmental Science & Eamp; Technology</i> , 2016 , 50, 6442-8	10.3	80
214	Chemical poison and regeneration of SCR catalysts for NO x removal from stationary sources. <i>Frontiers of Environmental Science and Engineering</i> , 2016 , 10, 413-427	5.8	79

213	Template-free Scalable Synthesis of Flower-like Co3-xMnxO4 Spinel Catalysts for Toluene Oxidation. <i>ChemCatChem</i> , 2018 , 10, 3429-3434	5.2	79
212	Insight into deactivation of commercial SCR catalyst by arsenic: an experiment and DFT study. <i>Environmental Science & Environmental &</i>	10.3	79
211	Low content of CoOx supported on nanocrystalline CeO2 for toluene combustion: The importance of interfaces between active sites and supports. <i>Applied Catalysis B: Environmental</i> , 2019 , 240, 329-336	21.8	78
210	Mechanism of Selective Catalytic Reduction of NOx with NH3 over CeO2-WO3 Catalysts. <i>Chinese Journal of Catalysis</i> , 2011 , 32, 836-841	11.3	75
209	N2 Selectivity of NO Reduction by NH3 over MnOxteO2: Mechanism and Key Factors. <i>Journal of Physical Chemistry C</i> , 2014 , 118, 21500-21508	3.8	74
208	Synthesis, characterization and catalytic activities of vanadium dryptomelane manganese oxides in low-temperature NO reduction with NH3. <i>Applied Catalysis A: General</i> , 2011 , 393, 323-330	5.1	73
207	Competition of selective catalytic reduction and non selective catalytic reduction over MnOx/TiO2 for NO removal: the relationship between gaseous NO concentration and N2O selectivity. <i>Catalysis Science and Technology</i> , 2014 , 4, 224-232	5.5	71
206	Three-Dimensionally Ordered Macroporous La0.6Sr0.4MnO3 Supported Ag Nanoparticles for the Combustion of Methane. <i>Journal of Physical Chemistry C</i> , 2014 , 118, 14913-14928	3.8	70
205	Comparison on the Performance of Fe2O3 and Fe2O3 for Selective Catalytic Reduction of Nitrogen Oxides with Ammonia. <i>Catalysis Letters</i> , 2013 , 143, 697-704	2.8	69
204	Novel MoO3/CeO2IrO2 catalyst for the selective catalytic reduction of NOx by NH3. <i>Catalysis Communications</i> , 2015 , 65, 51-54	3.2	68
203	Regeneration of Commercial SCR Catalysts: Probing the Existing Forms of Arsenic Oxide. <i>Environmental Science & Environmental </i>	10.3	67
202	Ceria promotion on the potassium resistance of MnOx/TiO2 SCR catalysts: An experimental and DFT study. <i>Chemical Engineering Journal</i> , 2015 , 269, 44-50	14.7	66
201	Excellent Activity and Selectivity of One-Pot Synthesized Cu-SSZ-13 Catalyst in the Selective Catalytic Oxidation of Ammonia to Nitrogen. <i>Environmental Science & Environmental Science & Environment</i>	8 ¹⁰ 8 ³	65
200	OMS-2 Catalysts for Formaldehyde Oxidation: Effects of Ce and Pt on Structure and Performance of the Catalysts. <i>Catalysis Letters</i> , 2009 , 131, 500-505	2.8	65
199	Comparison of preparation methods for ceria catalyst and the effect of surface and bulk sulfates on its activity toward NH3-SCR. <i>Journal of Hazardous Materials</i> , 2013 , 262, 782-8	12.8	64
198	Facile surface improvement method for LaCoO3 for toluene oxidation. <i>Catalysis Science and Technology</i> , 2018 , 8, 3166-3173	5.5	64
197	Using Transient FTIR Spectroscopy to Probe Active Sites and Reaction Intermediates for Selective Catalytic Reduction of NO on Cu/SSZ-13 Catalysts. <i>ACS Catalysis</i> , 2019 , 9, 6137-6145	13.1	63
196	Design Strategies for CeO2-MoO3 Catalysts for DeNOx and Hg(0) Oxidation in the Presence of HCl: The Significance of the Surface Acid-Base Properties. <i>Environmental Science & amp; Technology</i> , 2015 , 49, 12388-94	10.3	63

195	Design strategies for P-containing fuels adaptable CeO2-MoO3 catalysts for DeNO(x): significance of phosphorus resistance and N2 selectivity. <i>Environmental Science & Environmental Science & Environ</i>	10.3	62
194	Air pollution and its control in China. <i>Frontiers of Environmental Science and Engineering in China</i> , 2007 , 1, 129-142		62
193	Roles of Oxygen Vacancies in the Bulk and Surface of CeO for Toluene Catalytic Combustion. <i>Environmental Science & Combustion</i> 2020, 54, 12684-12692	10.3	62
192	Identification of active sites and reaction mechanism on low-temperature SCR activity over Cu-SSZ-13 catalysts prepared by different methods. <i>Catalysis Science and Technology</i> , 2016 , 6, 6294-6304	5.5	62
191	Reaction pathway investigation on the selective catalytic reduction of NO with NH3 over Cu/SSZ-13 at low temperatures. <i>Environmental Science & Environmental Science & Enviro</i>	10.3	61
190	Impacts of Pb and SO Poisoning on CeO-WO/TiO-SiO SCR Catalyst. <i>Environmental Science & Emp;</i> Technology, 2017 , 51, 11943-11949	10.3	61
189	Role of Lattice Oxygen and Lewis Acid on Ethanol Oxidation over OMS-2 Catalyst. <i>Journal of Physical Chemistry C</i> , 2010 , 114, 10544-10550	3.8	61
188	High calcium resistance of CeO2IMO3 SCR catalysts: Structure investigation and deactivation analysis. <i>Chemical Engineering Journal</i> , 2017 , 317, 70-79	14.7	59
187	Ce-Sn binary oxide catalyst for the selective catalytic reduction of NOx by NH3. <i>Applied Surface Science</i> , 2018 , 428, 526-533	6.7	59
186	Correlation of the changes in the framework and active Cu sites for typical Cu/CHA zeolites (SSZ-13 and SAPO-34) during hydrothermal aging. <i>Physical Chemistry Chemical Physics</i> , 2015 , 17, 29142-9	3.6	58
185	Enhanced low-temperature activity of LaMnO3 for toluene oxidation: The effect of treatment with an acidic KMnO4. <i>Chemical Engineering Journal</i> , 2019 , 366, 92-99	14.7	57
184	Different exposed facets VO /CeO2 catalysts for the selective catalytic reduction of NO with NH3. <i>Chemical Engineering Journal</i> , 2018 , 349, 184-191	14.7	57
183	Highly active and stable interface derived from Pt supported on Ni/Fe layered double oxides for HCHO oxidation. <i>Catalysis Science and Technology</i> , 2017 , 7, 1573-1580	5.5	56
182	Identification of the arsenic resistance on MoO3 doped CeO2/TiO2 catalyst for selective catalytic reduction of NOx with ammonia. <i>Journal of Hazardous Materials</i> , 2016 , 318, 615-622	12.8	56
181	Deactivation performance and mechanism of alkali (earth) metals on V2O5IWO3/TiO2 catalyst for oxidation of gaseous elemental mercury in simulated coal-fired flue gas. <i>Catalysis Today</i> , 2011 , 175, 189	195	56
180	Selective catalytic reduction of NO with NH3 over novel ironflungsten mixed oxide catalyst in a broad temperature range. <i>Catalysis Science and Technology</i> , 2015 , 5, 4556-4564	5.5	55
179	Structural effects of iron spinel oxides doped with Mn, Co, Ni and Zn on selective catalytic reduction of NO with NH3. <i>Journal of Molecular Catalysis A</i> , 2013 , 376, 13-21		54
178	Manganese doped CeO2WO3 catalysts for the selective catalytic reduction of NO with NH3: An experimental and theoretical study. <i>Catalysis Communications</i> , 2012 , 19, 127-131	3.2	54

177	Characterization of CeO2MO3 catalysts prepared by different methods for selective catalytic reduction of NO with NH3. <i>Catalysis Communications</i> , 2013 , 40, 145-148	3.2	53
176	Deactivation Mechanism of Multipoisons in Cement Furnace Flue Gas on Selective Catalytic Reduction Catalysts. <i>Environmental Science & Environmental S</i>	10.3	52
175	Synthesis of three-dimensional ordered mesoporous MnO2 and its catalytic performance in formaldehyde oxidation. <i>Chinese Journal of Catalysis</i> , 2016 , 37, 27-31	11.3	51
174	High activity and wide temperature window of Fe-Cu-SSZ-13 in the selective catalytic reduction of NO with ammonia. <i>AICHE Journal</i> , 2015 , 61, 3825-3837	3.6	51
173	Interaction of phosphorus with a FeTiOx catalyst for selective catalytic reduction of NOx with NH3: Influence on surface acidity and SCR mechanism. <i>Chemical Engineering Journal</i> , 2018 , 347, 173-183	14.7	49
172	Performance of Modified La SrMnO Perovskite Catalysts for NH Oxidation: TPD, DFT, and Kinetic Studies. <i>Environmental Science & Environmental Science </i>	10.3	49
171	Catalytic combustion of methane over cerium-doped cobalt chromite catalysts. <i>Catalysis Today</i> , 2011 , 175, 216-222	5.3	49
170	Ultra hydrothermal stability of CeO2-WO3/TiO2 for NH3-SCR of NO compared to traditional V2O5-WO3/TiO2 catalyst. <i>Catalysis Today</i> , 2015 , 258, 11-16	5.3	48
169	Controllable redox-induced in-situ growth of MnO2 over Mn2O3 for toluene oxidation: Active heterostructure interfaces. <i>Applied Catalysis B: Environmental</i> , 2020 , 278, 119279	21.8	48
168	Sodium-promoted Ag/CeO2 nanospheres for catalytic oxidation of formaldehyde. <i>Chemical Engineering Journal</i> , 2018 , 350, 419-428	14.7	48
167	MnO -CeO2 supported on Cu-SSZ-13: A novel SCR catalyst in a wide temperature range. <i>Applied Catalysis A: General</i> , 2017 , 547, 146-154	5.1	48
166	Extraordinary Deactivation Offset Effect of Arsenic and Calcium on CeO-WO SCR Catalysts. <i>Environmental Science & Description of Ceo-Wo Scr Catalysts</i> .	10.3	47
165	A novel mechanism for poisoning of metal oxide SCR catalysts: base-acid explanation correlated with redox properties. <i>Chemical Communications</i> , 2014 , 50, 10031-4	5.8	47
164	A novel magnetic Fellily spinel catalyst for the selective catalytic reduction of NO with NH3 in a broad temperature range. <i>Catalysis Science and Technology</i> , 2012 , 2, 915	5.5	47
163	Novel promoting effect of SO2 on the selective catalytic reduction of NO by ammonia over Co3O4 catalyst. <i>Catalysis Communications</i> , 2007 , 8, 2096-2099	3.2	46
162	Promoter rather than Inhibitor: Phosphorus Incorporation Accelerates the Activity of V2O5IWO3/TiO2 Catalyst for Selective Catalytic Reduction of NOx by NH3. <i>ACS Catalysis</i> , 2020 , 10, 2747	7-2753	45
161	An experimental and DFT study of the adsorption and oxidation of NH3 on a CeO2 catalyst modified by Fe, Mn, La and Y. <i>Catalysis Today</i> , 2015 , 242, 300-307	5.3	44
160	The role of the Cu dopant on a Mn3O4 spinel SCR catalyst: Improvement of low-temperature activity and sulfur resistance. <i>Chemical Engineering Journal</i> , 2020 , 387, 124090	14.7	44

(2009-2009)

159	Promotional mechanism of tungstation on selective catalytic reduction of NOx by methane over In/WO3/ZrO2. <i>Applied Catalysis B: Environmental</i> , 2009 , 91, 123-134	21.8	44	
158	Experimental and DFT studies on Sr-doped LaMnO3 catalysts for NOx storage and reduction. <i>Catalysis Science and Technology</i> , 2015 , 5, 2478-2485	5.5	43	
157	Effects of noble metals doped on mesoporous LaAlNi mixed oxide catalyst and identification of carbon deposit for reforming CH4 with CO2. <i>Journal of Chemical Technology and Biotechnology</i> , 2014 , 89, 372-381	3.5	43	
156	Comparison of the Structures and Mechanism of Arsenic Deactivation of CeO2MoO3 and CeO2MO3 SCR Catalysts. <i>Journal of Physical Chemistry C</i> , 2016 , 120, 18005-18014	3.8	43	
155	NH3-SCR performance of WO3 blanketed CeO2 with different morphology: Balance of surface reducibility and acidity. <i>Catalysis Today</i> , 2019 , 332, 42-48	5.3	41	
154	Distinguished Roles with Various Vanadium Loadings Of CoCr2NvxO4 (x = 00.20) for Methane Combustion. <i>Journal of Physical Chemistry C</i> , 2011 , 115, 17400-17408	3.8	41	
153	Knowledge and know-how in improving the sulfur tolerance of deNOx catalysts. <i>Catalysis Today</i> , 2010 , 153, 95-102	5.3	41	
152	Relations between iron sites and performance of Fe/HBEA catalysts prepared by two different methods for NH3-SCR. <i>Chemical Engineering Journal</i> , 2012 , 209, 652-660	14.7	40	
151	Influence of calcination temperature on Fe/HBEA catalyst for the selective catalytic reduction of NOx with NH3. <i>Catalysis Today</i> , 2012 , 184, 145-152	5.3	40	
150	The activity and characterization of solgel Sn/Al2O3 catalyst for selective catalytic reduction of NOx in the presence of oxygen. <i>Catalysis Today</i> , 2004 , 90, 215-221	5.3	39	
149	Enhancement of N2O decomposition performance by N2O pretreatment over Ce-Co-O catalyst. <i>Chemical Engineering Journal</i> , 2018 , 347, 184-192	14.7	38	
148	Identification of sulfate species and their influence on SCR performance of Cu/CHA catalyst. <i>Catalysis Science and Technology</i> , 2017 , 7, 1523-1528	5.5	37	
147	Dechlorination of chlorobenzene on vanadium-based catalysts for low-temperature SCR. <i>Chemical Communications</i> , 2018 , 54, 2032-2035	5.8	37	
146	Studies on toluene adsorption performance and hydrophobic property in phenyl functionalized KIT-6. <i>Chemical Engineering Journal</i> , 2018 , 334, 191-197	14.7	37	
145	Complete combustion of methane over indium tin oxides catalysts. <i>Environmental Science & Environmental Science & Technology</i> , 2006 , 40, 6455-9	10.3	37	
144	Bridging the reaction route of toluene total oxidation and the structure of ordered mesoporous Co 3 O 4: The roles of surface sodium and adsorbed oxygen. <i>Catalysis Today</i> , 2017 , 297, 173-181	5.3	36	
143	The deactivation mechanism of toluene on MnOx-CeO2 SCR catalyst. <i>Applied Catalysis B: Environmental</i> , 2020 , 277, 119257	21.8	36	
142	Non-thermal plasma-assisted catalytic NOx storage over Pt/Ba/Al2O3 at low temperatures. <i>Applied Catalysis B: Environmental</i> , 2009 , 90, 360-367	21.8	36	

141	Effects of anaerobic SO2 treatment on nano-CeO2 of different morphologies for selective catalytic reduction of NOx with NH3. <i>Chemical Engineering Journal</i> , 2020 , 382, 122910	14.7	36
140	Identification of the reaction pathway and reactive species for the selective catalytic reduction of NO with NH3 over cerium Biobium oxide catalysts. <i>Catalysis Science and Technology</i> , 2016 , 6, 2136-2142	5.5	35
139	Synergistic Promotion Effect between NO and Chlorobenzene Removal on MnO -CeO Catalyst. <i>ACS Applied Materials & Amp; Interfaces</i> , 2018 , 10, 30426-30432	9.5	35
138	Multipollutant Control (MPC) of Flue Gas from Stationary Sources Using SCR Technology: A Critical Review. <i>Environmental Science & Environmental Scien</i>	10.3	34
137	Dual Effect of Sulfation on the Selective Catalytic Reduction of NO with NH3 over MnOx/TiO2: Key Factor of NH3 Distribution. <i>Industrial & Engineering Chemistry Research</i> , 2014 , 53, 5810-5819	3.9	32
136	The abatement of major pollutants in air and water by environmental catalysis. <i>Frontiers of Environmental Science and Engineering</i> , 2013 , 7, 302-325	5.8	31
135	The relationship between surface open cells of \(\text{HMnO2} \) and CO oxidation ability from a surface point of view. \(\text{Journal of Materials Chemistry A, 2017} \), 5, 20911-20921	13	31
134	Engineering surface functional groups on mesoporous silica: towards a humidity-resistant hydrophobic adsorbent. <i>Journal of Materials Chemistry A</i> , 2018 , 6, 13769-13777	13	31
133	Sn-doped rutile TiO2 for vanadyl catalysts: Improvements on activity and stability in SCR reaction. <i>Applied Catalysis B: Environmental</i> , 2020 , 269, 118797	21.8	30
132	NO x Storage at Low Temperature over MnO x \$\text{S}nO2\$ Binary Metal Oxide Prepared Through Different Hydrothermal Process. <i>Catalysis Letters</i> , 2009 , 127, 107-112	2.8	29
131	Construction and characterization of an atmospheric simulation smog chamber. <i>Advances in Atmospheric Sciences</i> , 2007 , 24, 250-258	2.9	29
130	Performance and Mechanism of Photocatalytic Toluene Degradation and Catalyst Regeneration by Thermal/UV Treatment. <i>Environmental Science & Environmental Science & Environmen</i>	10.3	29
129	The promoting effects of amorphous CePO 4 species on phosphorus-doped CeO 2 /TiO 2 catalysts for selective catalytic reduction of NO x by NH 3. <i>Molecular Catalysis</i> , 2018 , 453, 47-54	3.3	29
128	Hollow-Structural Ag/Co3O4 Nanocatalyst for CO Oxidation: Interfacial Synergistic Effect. <i>ACS Applied Nano Materials</i> , 2019 , 2, 3480-3489	5.6	28
127	Influence of Preparation Methods of In2O3/Al2O3 Catalyst on Selective Catalytic Reduction of NO by Propene in the Presence of Oxygen. <i>Catalysis Letters</i> , 2005 , 103, 75-82	2.8	28
126	Exploration of reaction mechanism between acid gases and elemental mercury on the CeO2WO3/TiO2 catalyst via in situ DRIFTS. <i>Fuel</i> , 2019 , 239, 162-172	7.1	28
125	Low-temperature selective catalytic reduction of NO by CO over Fe-ZSM-5 catalysts in the presence of O. <i>Journal of Hazardous Materials</i> , 2020 , 383, 121117	12.8	27
124	MnO -CeO2 catalysts for effective NO reduction in the presence of chlorobenzene. <i>Catalysis Communications</i> , 2018 , 117, 1-4	3.2	26

123	MnOx-SnO2 Catalysts Synthesized by a Redox Coprecipitation Method for Selective Catalytic Reduction of NO by NH3. <i>Chinese Journal of Catalysis</i> , 2008 , 29, 531-536	11.3	26
122	The outstanding performance of LDH-derived mixed oxide Mn/CoAlOx for Hg0 oxidation. <i>Catalysis Science and Technology</i> , 2015 , 5, 3536-3544	5.5	25
121	Probing Active-Site Relocation in Cu/SSZ-13 SCR Catalysts during Hydrothermal Aging by In Situ EPR Spectroscopy, Kinetics Studies, and DFT Calculations. <i>ACS Catalysis</i> , 2020 , 10, 9410-9419	13.1	24
120	The poisoning mechanism of gaseous HCl on low-temperature SCR catalysts: MnO L eO2 as an example. <i>Applied Catalysis B: Environmental</i> , 2020 , 267, 118668	21.8	24
119	Improved Activity and H2O Resistance of Cu-Modified MnO2 Catalysts for NO Oxidation. <i>Industrial & Engineering Chemistry Research</i> , 2018 , 57, 920-926	3.9	23
118	A neutral and coordination regeneration method of Ca-poisoned V2O5-WO3/TiO2 SCR catalyst. <i>Catalysis Communications</i> , 2017 , 100, 112-116	3.2	23
117	Cooperation of Pt/Al2O3 and In/Al2O3 catalysts for NO reduction by propene in lean burn condition. <i>Applied Catalysis A: General</i> , 2004 , 265, 43-52	5.1	23
116	A new insight into adsorption state and mechanism of adsorbates in porous materials. <i>Journal of Hazardous Materials</i> , 2020 , 382, 121103	12.8	23
115	Promoting SO Resistance of a CeO(5)-WO(9)/TiO Catalyst for Hg Oxidation via Adjusting the Basicity and Acidity Sites Using a CuO Doping Method. <i>Environmental Science & Environmental Science & Envir</i>	10.3	22
114	Promotion Effect of Gato Spinel Derived from Layered Double Hydroxides for Toluene Oxidation. <i>ChemCatChem</i> , 2018 , 10, 4838-4843	5.2	22
113	Catalytic performance and reaction mechanism of NO oxidation over Co3O4 catalysts. <i>Applied Catalysis B: Environmental</i> , 2020 , 267, 118371	21.8	21
112	Highly selective Hmn2O3 catalyst for cGPF soot oxidation: Surface activated oxygen enhancement via selective dissolution. <i>Chemical Engineering Journal</i> , 2019 , 364, 448-451	14.7	21
111	Theory and practice of metal oxide catalyst design for the selective catalytic reduction of NO with NH3. <i>Catalysis Today</i> , 2021 , 376, 292-301	5.3	21
110	NOx Removal over V2O5/WO3IIiO2 Prepared by a Grinding Method: Influence of the Precursor on Vanadium Dispersion. <i>Industrial & Engineering Chemistry Research</i> , 2018 , 57, 150-157	3.9	20
109	Fe2O3@SiTi coreBhell catalyst for the selective catalytic reduction of NOx with NH3: activity improvement and HCl tolerance. <i>Catalysis Science and Technology</i> , 2018 , 8, 3313-3320	5.5	19
108	Decreasing effect and mechanism of FeSO4 seed particles on secondary organic aerosol in pinene photooxidation. <i>Environmental Pollution</i> , 2014 , 193, 88-93	9.3	19
107	Heterogeneous Reactions between Toluene and NO on Mineral Particles under Simulated Atmospheric Conditions. <i>Environmental Science & Environmental & Environme</i>	10.3	19
106	New insights into the promotional effects of Cu and Fe over V2O5-WO3/TiO2 NH3-SCR catalysts towards oxidation of Hg0. <i>Catalysis Communications</i> , 2017 , 100, 169-172	3.2	19

105	The promotional effect of MoO3 doped V2O5/TiO2 for chlorobenzene oxidation. <i>Catalysis Communications</i> , 2015 , 69, 161-164	3.2	18
104	The poisoning effects of phosphorus on CeO 2 -MoO 3 /TiO 2 DeNO x catalysts: NH 3 -SCR activity and the formation of N 2 O. <i>Molecular Catalysis</i> , 2017 , 439, 15-24	3.3	17
103	The synergistic mechanism of NOx and chlorobenzene degradation in municipal solid waste incinerators. <i>Catalysis Science and Technology</i> , 2019 , 9, 4286-4292	5.5	17
102	Novel Fe-Ce-O mixed metal oxides catalyst prepared by hydrothermal method for Hg0 oxidation in the presence of NH3. <i>Catalysis Communications</i> , 2017 , 100, 210-213	3.2	17
101	Iron tungsten mixed composite as a robust oxygen evolution electrocatalyst. <i>Chemical Communications</i> , 2019 , 55, 10944-10947	5.8	16
100	Novel W-modified SnMnCeOx catalyst for the selective catalytic reduction of NOx with NH3. <i>Catalysis Communications</i> , 2017 , 100, 117-120	3.2	16
99	A multiple-active-site Cu/SSZ-13 for NH3-SCO: Influence of Si/Al ratio on the catalytic performance. <i>Catalysis Communications</i> , 2020 , 135, 105751	3.2	16
98	Synthesis of ⊞MnO-like rod catalyst using YMnO A-site sacrificial strategy for efficient benzene oxidation. <i>Journal of Hazardous Materials</i> , 2021 , 403, 123811	12.8	16
97	A facile and controllable in situ sulfation strategy for CuCeZr catalyst for NH3-SCR. <i>Applied Catalysis A: General</i> , 2020 , 597, 117554	5.1	15
96	Balance between Reducibility and NO Adsorption Capacity for the NO Decomposition: CuCo Catalysts as an Example. <i>Environmental Science & Environmental Science & Environmental</i>	10.3	15
95	Effects of two transition metal sulfate salts on secondary organic aerosol formation in toluene/NO x photooxidation. <i>Frontiers of Environmental Science and Engineering</i> , 2013 , 7, 1-9	5.8	15
94	Silver T obalt Oxides Derived from Silver Nanoparticles Deposited on Layered Double Hydroxides for Methane Combustion. <i>ChemCatChem</i> , 2015 , 7, 1966-1974	5.2	15
93	Reaction mechanism of propane oxidation over Co3O4 nanorods as rivals of platinum catalysts. <i>Chemical Engineering Journal</i> , 2020 , 402, 125911	14.7	14
92	Multi-pollutant control (MPC) of NO and chlorobenzene from industrial furnaces using a vanadia-based SCR catalyst. <i>Applied Catalysis B: Environmental</i> , 2021 , 285, 119835	21.8	14
91	Fe-Doped EMnO nanorods for the catalytic removal of NO and chlorobenzene: the relationship between lattice distortion and catalytic redox properties. <i>Physical Chemistry Chemical Physics</i> , 2019 , 21, 25880-25888	3.6	14
90	Modified Silica Adsorbents for Toluene Adsorption under Dry and Humid Conditions: Impacts of Pore Size and Surface Chemistry. <i>Langmuir</i> , 2019 , 35, 8927-8934	4	13
89	In Situ Modulation of A-Site Vacancies in LaMnO Perovskite for Surface Lattice Oxygen Activation and Boosted Redox Reactions. <i>Angewandte Chemie - International Edition</i> , 2021 , 60, 26747-26754	16.4	13
88	Surface In Situ Doping Modification over MnO for Toluene and Propene Catalytic Oxidation: The Effect of Isolated Cu Insertion into the Mezzanine of Surface MnO Cladding. <i>ACS Applied Materials & Amp; Interfaces</i> , 2021 , 13, 2753-2764	9.5	13

(2020-2021)

87	Boosting the Catalytic Performance of CeO in Toluene Combustion via the Ce-Ce Homogeneous Interface. <i>Environmental Science & Technology</i> , 2021 , 55, 12630-12639	10.3	13	
86	Vanadium-density-dependent thermal decomposition of NH4HSO4 on V2O5/TiO2 SCR catalysts. <i>Catalysis Science and Technology</i> , 2019 , 9, 3779-3787	5.5	12	
85	Rational tuning towards A/B-sites double-occupying cobalt on tri-metallic spinel: Insights into its catalytic activity on toluene catalytic oxidation. <i>Chemical Engineering Journal</i> , 2020 , 399, 125792	14.7	12	
84	Enhanced Low-Temperature Activity of Toluene Oxidation over the Rod-like MnO2/LaMnO3 Perovskites with Alkaline Hydrothermal and Acid-Etching Treatment. <i>Industrial & Discreting Chemistry Research</i> , 2020 , 59, 6556-6564	3.9	12	
83	NH3 selective catalytic reduction of NO: A large surface TiO2 support and its promotion of V2O5 dispersion on the prepared catalyst. <i>Chinese Journal of Catalysis</i> , 2016 , 37, 878-887	11.3	12	
82	The effect of additives and intermediates on vanadia-based catalyst for multi-pollutant control. <i>Catalysis Science and Technology</i> , 2020 , 10, 323-326	5.5	12	
81	The promotion effect of ceria on high vanadia loading NH3-SCR catalysts. <i>Catalysis Communications</i> , 2019 , 121, 84-88	3.2	12	
80	The Absence of Oxygen in Sulfation Promotes the Performance of the Sulfated CeO2 Catalyst for Low-Temperature Selective Catalytic Reduction of NOx by NH3: Redox Property versus Acidity. <i>ACS Sustainable Chemistry and Engineering</i> , 2021 , 9, 967-979	8.3	12	
79	Effect of Fe precursors on the catalytic activity of Fe/SAPO-34 catalysts for N2O decomposition. <i>Catalysis Communications</i> , 2019 , 128, 105706	3.2	11	
78	Secondary aerosol formation and oxidation capacity in photooxidation in the presence of Al2O3 seed particles and SO2. <i>Science China Chemistry</i> , 2015 , 58, 1426-1434	7.9	11	
77	Activity enhancement of sulphated Fe2O3 supported on TiO2@rO2 for the selective catalytic reduction of NO by NH3. <i>Applied Surface Science</i> , 2020 , 528, 146695	6.7	11	
76	Effect of pore size in mesoporous MnO 2 prepared by KIT-6 aged at different temperatures on ethanol catalytic oxidation. <i>Chinese Journal of Catalysis</i> , 2018 , 39, 630-638	11.3	11	
75	Complete oxidation of methane on Co3O4-SnO2 catalysts. <i>Frontiers of Environmental Science and Engineering in China</i> , 2009 , 3, 265-270		11	
74	Fabrication of Nanohybrid Spinel@CuO Catalysts for Propane Oxidation: Modified Spinel and Enhanced Activity by Temperature-Dependent Acid Sites. <i>ACS Applied Materials & Dependent Acid Sites</i> , 2021, 13, 27106-27118	9.5	11	
73	Simultaneous removal of NOx and chlorobenzene on V2O5/TiO2 granular catalyst: Kinetic study and performance prediction. <i>Frontiers of Environmental Science and Engineering</i> , 2021 , 15, 1	5.8	11	
72	Zeolitic Imidazolate Framework-67-Derived CeO2@Co3O4 CoreBhell Microspheres with Enhanced Catalytic Activity toward Toluene Oxidation. <i>Industrial & Engineering Chemistry Research</i> , 2020 , 59, 10328-10337	3.9	10	
71	The Roles of Various Plasma Active Species in Toluene Degradation by Non-thermal Plasma and Plasma Catalysis. <i>Plasma Chemistry and Plasma Processing</i> , 2019 , 39, 1469-1482	3.6	10	
70	Core-shell-like structured EMnO2@CeO2 catalyst for selective catalytic reduction of NO: Promoted activity and SO2 tolerance. <i>Chemical Engineering Journal</i> , 2020 , 391, 123473	14.7	10	

69	Modified red mud catalyst for the selective catalytic reduction of nitrogen oxides: Impact mechanism of cerium precursors on surface physicochemical properties. <i>Chemosphere</i> , 2020 , 257, 1272	1 ⁸ ·4	10
68	Distinctive Bimetallic Oxides for Enhanced Catalytic Toluene Combustion: Insights into the Tunable Fabrication of Mnt Hollow Structure. <i>ChemCatChem</i> , 2020 , 12, 2872-2879	5.2	9
67	Selective Catalytic Reduction of NOx with CH4 over the In/Sulfated TiO2 Catalyst. <i>Catalysis Letters</i> , 2008 , 122, 138-143	2.8	9
66	High efficiency of noble metal and metal oxide catalyst systems for the selective reduction of NO with propene in lean exhaust gas. <i>Topics in Catalysis</i> , 2004 , 30/31, 81-84	2.3	9
65	Review of Sulfur Promotion Effects on Metal Oxide Catalysts for NOx Emission Control. <i>ACS Catalysis</i> ,13119-13139	13.1	9
64	Synthesis and evaluation of mesopore structured ZSM-5 and a CuZSM-5 catalyst for NH3-SCR reaction: studies of simulated exhaust and engine bench testing. <i>RSC Advances</i> , 2016 , 6, 102570-10258	1 ^{3.7}	9
63	Investigation on removal of NO and Hg0 with different Cu species in Cu-SAPO-34 zeolites. <i>Catalysis Communications</i> , 2019 , 119, 91-95	3.2	9
62	Alloying effect-induced electron polarization drives nitrate electroreduction to ammonia. <i>Chem Catalysis</i> , 2021 ,		9
61	Design strategies of surface basicity for NO oxidation over a novel Sntoto catalyst in the presence of H2O. <i>Catalysis Science and Technology</i> , 2017 , 7, 2057-2064	5.5	8
60	Comparison of NH3-SCO performance over CuOx/H-SSZ-13 and CuOx/H-SAPO-34 catalysts. <i>Applied Catalysis A: General</i> , 2019 , 585, 117119	5.1	8
59	New Insights on Competitive Adsorption of NO/SO on TiO Anatase for Photocatalytic NO Oxidation. <i>Environmental Science & Environmental Science & Envir</i>	10.3	8
58	Promoting effect of sol-gel method and pre-treatment on the activity of SnO2/Al2O3 catalyst for NO reduction by propene. <i>Reaction Kinetics and Catalysis Letters</i> , 2003 , 80, 45-52		7
57	Nb-incorporated Fe (oxy)hydroxide derived from structural transformation for efficient oxygen evolution electrocatalysis. <i>Journal of Materials Chemistry A</i> , 2020 , 8, 24598-24607	13	7
56	Impact of NO and NH addition on toluene oxidation over MnO-CeO catalyst. <i>Journal of Hazardous Materials</i> , 2021 , 416, 125939	12.8	7
55	A novel like MnO catalyst for ozone decomposition in high humidity conditions. <i>Journal of Hazardous Materials</i> , 2021 , 420, 126641	12.8	7
54	Insights over Titanium Modified FeMgOx Catalysts for Selective Catalytic Reduction of NOx with NH3: Influence of Precursors and Crystalline Structures. <i>Catalysts</i> , 2019 , 9, 560	4	6
53	Severe deactivation and artificial enrichment of thallium on commercial SCR catalysts installed in cement kiln. <i>Applied Catalysis B: Environmental</i> , 2020 , 277, 119194	21.8	6
52	Selective Catalytic Reduction of NOx with Ammonia over Copper Ion Exchanged SAPO-47 Zeolites in a Wide Temperature Range. <i>ChemCatChem</i> , 2018 , 10, 2481-2487	5.2	6

51	Lean NO BnO2DeO2 catalyst at low temperatures. Catalysis Today, 2015, 258, 556-563	5.3	6
50	Insight into the promotion mechanism of activated carbon on the monolithic honeycomb red mud catalyst for selective catalytic reduction of NOx. <i>Frontiers of Environmental Science and Engineering</i> , 2021 , 15, 1	5.8	6
49	Boosting nitrous oxide direct decomposition performance based on samarium doping effects. <i>Chemical Engineering Journal</i> , 2021 , 414, 128643	14.7	6
48	Effects of phosphorus modification on the catalytic properties and performance of CuCeZr mixed metal catalyst for simultaneous removal of CO and NOx. <i>Chemical Engineering Journal</i> , 2021 , 423, 1302	2 ^{§4.7}	6
47	Quantitative Cu Counting Methodologies for Cu/SSZ-13 Selective Catalytic Reduction Catalysts by Electron Paramagnetic Resonance Spectroscopy. <i>Journal of Physical Chemistry C</i> , 2020 , 124, 28061-280	7 3 .8	5
46	Comparison of NO adsorbing ability and process on Pt/Mg/Al oxide catalysts prepared by different methods. <i>Catalysis Letters</i> , 2007 , 116, 155-160	2.8	5
45	New Insight into the In Situ SO2 Poisoning Mechanism over Cu-SSZ-13 for the Selective Catalytic Reduction of NOx with NH3. <i>Catalysts</i> , 2020 , 10, 1391	4	5
44	Cu/SAPO-34 prepared by a facile ball milling method for enhanced catalytic performance in the selective catalytic reduction of NO with NH. <i>Physical Chemistry Chemical Physics</i> , 2019 , 21, 22113-22120	3.6	5
43	Hierarchically devising NiFeO H catalyst with surface Fe active sites for efficient oxygen evolution reaction. <i>Catalysis Today</i> , 2021 , 364, 140-147	5.3	5
42	Predicting the adsorption of organic pollutants on boron nitride nanosheets via in silico techniques: DFT computations and QSAR modeling. <i>Environmental Science: Nano</i> , 2021 , 8, 795-805	7.1	5
41	Carbon Dioxide Promotes Dehydrogenation in the Equimolar C H -CO Reaction to Synthesize Carbon Nanotubes. <i>Small</i> , 2018 , 14, e1703482	11	4
40	Novel Y2O3 Doped MnO x Binary Metal Oxides for NO x Storage at Low Temperature in Lean Burn Condition. <i>Catalysis Letters</i> , 2009 , 129, 104-110	2.8	4
39	Second organic aerosol formation by irradiation of ⊕inene-NOx-H2O in an indoor smog chamber for atmospheric chemistry and physics. <i>Science Bulletin</i> , 2008 , 53, 3294-3300	10.6	4
38	Selective catalytic reduction of NO over metal oxide or noble metal-doped In2O3/Al2O3 catalysts by propene in the presence of oxygen. <i>Reaction Kinetics and Catalysis Letters</i> , 2003 , 80, 75-80		4
37	New insight on electroreduction of nitrate to ammonia driven by oxygen vacancies-induced strong interface interactions. <i>Journal of Catalysis</i> , 2022 , 406, 39-47	7.3	4
36	Revealing the Synergistic Deactivation Mechanism of Hydrothermal Aging and SO Poisoning on Cu/SSZ-13 under SCR Condition. <i>Environmental Science & Environmental Science & Env</i>	10.3	4
35	Penetration of Arsenic and Deactivation of a Honeycomb VO-WO/TiO Catalyst in a Glass Furnace. <i>Environmental Science & Environmental &</i>	10.3	4
34	Balance of activation and ring-breaking for toluene oxidation over CuO-MnO bimetallic oxides. Journal of Hazardous Materials, 2021 , 415, 125637	12.8	4

33	Effects of seed particles Al2O3, Al2(SO4)3 and H2SO4 on secondary organic aerosol. <i>Frontiers of Environmental Science and Engineering</i> , 2017 , 11, 1	5.8	3
32	Selective catalytic reduction of NO x from exhaust of lean-burn engine over Ag-Al2O3/cordierite catalyst. <i>Frontiers of Environmental Science and Engineering in China</i> , 2007 , 1, 143-146		3
31	Cooperation of reducing species for NO reduction over Ag/Al2O3 under oxidizing conditions. <i>Reaction Kinetics and Catalysis Letters</i> , 2005 , 84, 61-67		3
30	Synthesis of TixSn1-xO2 mixed metal oxide for copper catalysts as high-efficiency NH3 selective catalytic oxidation. <i>Fuel</i> , 2022 , 314, 123061	7.1	3
29	Temperature and Reaction Environment Influence the Nature of Platinum Species Supported on Ceria. <i>ACS Catalysis</i> ,13041-13049	13.1	3
28	B-Site modification of LaMn0.9Co0.1O3 perovskite using a selective dissolution method in C3H6 oxidation. <i>Catalysis Science and Technology</i> , 2020 , 10, 6464-6467	5.5	3
27	Application of smog chambers in atmospheric process studies <i>National Science Review</i> , 2022 , 9, nwab1	0<u>3</u>o. 8	3
26	Impact of anthropogenic heat emissions on meteorological parameters and air quality in Beijing using a high-resolution model simulation. <i>Frontiers of Environmental Science and Engineering</i> , 2022 , 16, 1	5.8	3
25	Interaction Mechanism for Simultaneous Elimination of Nitrogen Oxides and Toluene over the Bifunctional CeO-TiO Mixed Oxide Catalyst <i>Environmental Science & Environmental </i>	10.3	3
24	Efficient Electron Transfer by Plasmonic Silver in SrTiO for Low-Concentration Photocatalytic NO Oxidation <i>Environmental Science & Environmental Sc</i>	10.3	3
23	Promotional effect of Ce on the activity of In/WIrO2 for selective reduction of NO x with methane. <i>Catalysis Letters</i> , 2007 , 117, 68-72	2.8	2
22	Carbon/chlorinate deposition on MnOx-CeO2 catalyst in chlorobenzene combustion: The effect of SCR flue gas. <i>Chemical Engineering Journal</i> , 2021 , 133552	14.7	2
21	Coordinated control of fine-particle and ozone pollution by the substantial reduction of nitrogen oxides. <i>Engineering</i> , 2021 ,	9.7	2
20	Simultaneous Selective Catalytic Reduction of NO and N2O by NH3 over Fe-Zeolite Catalysts. <i>Industrial & Engineering Chemistry Research</i> , 2020 , 59, 19500-19509	3.9	2
19	Key intermediates from simultaneous removal of NOx and chlorobenzene over a V2O5WO3/TiO2 catalyst: a combined experimental and DFT study. <i>Catalysis Science and Technology</i> ,	5.5	2
18	MetalBupport Interactions within a Dual-Site Pd/YMn2O5 Catalyst during CH4 Combustion. <i>ACS Catalysis</i> ,4430-4439	13.1	2
17	Breaking the ActivityBelectivity Trade-Off for Simultaneous Catalytic Elimination of Nitric Oxide and Chlorobenzene via FeVO4Be2O3 Interfacial Charge Transfer. <i>ACS Catalysis</i> , 2022 , 12, 3797-3806	13.1	2
16	Two-step hydrothermal synthesis of highly active MnOx-CeO2 for complete oxidation of formaldehyde. <i>Chemical Engineering Journal</i> , 2022 , 440, 135854	14.7	2

LIST OF PUBLICATIONS

15	Effects of support acidity on the reaction mechanisms of selective catalytic reduction of NO by CH4 in excess oxygen. <i>Frontiers of Environmental Science and Engineering in China</i> , 2009 , 3, 186-193		1
14	Deactivation of Pd/SSZ-13 by Potassium and Water for Passive NOx Adsorption. <i>Processes</i> , 2022 , 10, 222	2.9	1
13	Identification of Intrinsic Active Sites for the Selective Catalytic Reduction of Nitric Oxide on Metal-Free Carbon Catalysts via Selective Passivation. <i>ACS Catalysis</i> , 2022 , 12, 1024-1030	13.1	1
12	Direct incorporating small amount of Ce (III) in Cu-SAPO-18 catalysts for enhanced low-temperature NH3-SCR activity: Influence on Cu distribution and Si coordination. <i>Chemical Engineering Journal</i> , 2022 , 435, 134890	14.7	1
11	Precise regulation of acid pretreatment for red mud SCR catalyst: Targeting on optimizing the acidity and reducibility. <i>Frontiers of Environmental Science and Engineering</i> , 2022 , 16, 1	5.8	1
10	Flame synthesized nanoscale catalyst (CuCeWTi) with excellent Hg oxidation activity and hydrothermal resistance. <i>Journal of Hazardous Materials</i> , 2021 , 408, 124427	12.8	1
9	Intrinsic insight of energy-efficiency optimization for CO2 capture by amine-based solvent: effect of mass transfer and solvent regeneration. <i>International Journal of Greenhouse Gas Control</i> , 2022 , 118, 103673	4.2	1
8	Surface Reconstruction of a Mullite-Type Catalyst via Selective Dissolution for NO Oxidation. <i>ACS Catalysis</i> , 2021 , 11, 14507-14520	13.1	O
7	Improvement of AlO on the multi-pollutant control performance of NO and chlorobenzene in vanadia-based catalysts. <i>Chemosphere</i> , 2021 , 289, 133156	8.4	O
6	Balancing redox and acidic properties for optimizing catalytic performance of SCR catalysts: A case study of nanopolyhedron CeO -supported WO. <i>Journal of Environmental Chemical Engineering</i> , 2021 , 9, 105828	6.8	O
5	Effect of Highly Concentrated Dry (NH4)2SO4 Seed Aerosols on Ozone and Secondary Organic Aerosol Formation in Aromatic Hydrocarbon/NOx Photooxidation Systems. <i>ACS Symposium Series</i> , 2009 , 111-126	0.4	
4	Two-stage catalytic system of Sn/Al2O3 and Pt/Al2O3for NO reduction by propene in lean conditions. <i>Reaction Kinetics and Catalysis Letters</i> , 2004 , 81, 265-272		
3	Cooperation of reducing species for NO reduction over Ag/Al2O3 under oxidizing conditions. <i>Reaction Kinetics and Catalysis Letters</i> , 2005 , 84, 61-67		
2	Remarkable enhancement in the N selectivity of NH-SCR over the CeNbFe/TiO catalyst in the presence of chlorobenzene. <i>Environmental Science and Pollution Research</i> , 2021 , 1	5.1	
1	Vanadium Substitution as an Effective Way to Enhance the Redox Ability of Tungstophosphoric Acid and for Application of NH3-SCR. <i>Catalysis Letters</i> , 2021 , 151, 2250	2.8	