Xiaowei Wu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1076256/publications.pdf

Version: 2024-02-01

516710 610901 25 807 16 24 h-index citations g-index papers 25 25 25 640 all docs docs citations times ranked citing authors

#	Article	IF	CITATIONS
1	Design, synthesis and biological evaluation of pyrazolo[3,4-d]pyridazinone derivatives as covalent FGFR inhibitors. Acta Pharmaceutica Sinica B, 2021, 11, 781-794.	12.0	16
2	Additive-Controlled Divergent Synthesis of Tetrasubstituted 1,3-Enynes and Alkynylated 3 <i>H</i> -Pyrrolo[1,2- <i>a</i>]indol-3-ones via Rhodium Catalysis. Organic Letters, 2021, 23, 727-733.	4.6	46
3	Small-molecule inhibitor of AF9/ENL-DOT1L/AF4/AFF4 interactions suppresses malignant gene expression and tumor growth. Theranostics, 2021, 11, 8172-8184.	10.0	17
4	Synthesis, Structure–Activity Relationships, and Antiviral Activity of Allosteric Inhibitors of Flavivirus NS2B–NS3 Protease. Journal of Medicinal Chemistry, 2021, 64, 2777-2800.	6.4	24
5	Redox-Neutral Rhodium(III)-Catalyzed Chemospecific and Regiospecific [4+1] Annulation between Indoles and Alkenes for the Synthesis of Functionalized Imidazo[1,5- <i>a</i> jindoles. Journal of Organic Chemistry, 2021, 86, 10591-10607.	3.2	11
6	Rh(III)-Catalyzed Divergent Synthesis of Alkynylated Imidazo[1,5- <i>a</i>) jindoles and α,α-Difluoromethylene Tetrasubstituted Alkenes. Organic Letters, 2021, 23, 5766-5771.	4.6	22
7	Chemo―and Regioselective Synthesis of Functionalized 1 <i>H</i> â€imidazo[1,5â€ <i>a</i>]indolâ€3(2 <i>H</i>)â€ones via a Redoxâ€Neutral Rhodium(III)â€Catalyzed [4 Annulation between Indoles and Alkynes. Advanced Synthesis and Catalysis, 2021, 363, 4380-4389.	1+4.]3	9
8	Chemo-, Regio-, and Stereoselective Assembly of Polysubstituted Furan-2(5 <i>H</i>)-ones Enabled by Rh(III)-Catalyzed Domino Câ€"H Alkenylation/Directing Group Migration/Lactonization: A Combined Experimental and Computational Study. ACS Catalysis, 2021, 11, 13921-13934.	11.2	20
9	Rhodium(III)-Catalyzed C–H Alkenylation/Directing Group Migration for the Regio- and Stereoselective Synthesis of Tetrasubstituted Alkenes. Organic Letters, 2020, 22, 9163-9168.	4.6	37
10	Rhodiumâ€Catalyzed Cascade Reactions of Indoles with 4â€Hydroxyâ€2â€Alkynoates for the Synthesis of Indoleâ€Fused Polyheterocycles. Advanced Synthesis and Catalysis, 2020, 362, 2953-2960.	4.3	31
11	Discovery, Structure–Activity Relationship, and Biological Activity of Histone-Competitive Inhibitors of Histone Acetyltransferases P300/CBP. Journal of Medicinal Chemistry, 2020, 63, 4716-4731.	6.4	17
12	Discovery and Development of a Series of Pyrazolo[3,4- <i>d</i>) pyridazinone Compounds as the Novel Covalent Fibroblast Growth Factor Receptor Inhibitors by the Rational Drug Design. Journal of Medicinal Chemistry, 2019, 62, 7473-7488.	6.4	28
13	Rhodium-Catalyzed [4 + 1] Cyclization via C–H Activation for the Synthesis of Divergent Heterocycles Bearing a Quaternary Carbon. Journal of Organic Chemistry, 2018, 83, 4650-4656.	3.2	60
14	Ruthenium(II)-Catalyzed Regio- and Stereoselective C–H Allylation of Indoles with Allyl Alcohols. Organic Letters, 2018, 20, 2224-2227.	4.6	44
15	Ruthenium-Catalyzed C–H Allylation of Alkenes with Allyl Alcohols via C–H Bond Activation in Aqueous Solution. Journal of Organic Chemistry, 2018, 83, 12094-12102.	3.2	22
16	Rhodium(<scp>iii</scp>)-catalyzed C–H allylation of indoles with allyl alcohols <i>via</i> β-hydroxide elimination. Organic and Biomolecular Chemistry, 2018, 16, 5691-5698.	2.8	22
17	Regio-selective and stereo-selective hydrosilylation of internal alkynes catalyzed by ruthenium complexes. RSC Advances, 2018, 8, 28261-28265.	3.6	8
18	Propargyl Alcohols as One-Carbon Synthons: Redox-Neutral Rhodium(III)-Catalyzed C–H Bond Activation for the Synthesis of Isoindolinones Bearing a Quaternary Carbon. Organic Letters, 2017, 19, 1294-1297.	4.6	106

#	Article	IF	CITATION
19	Ruthenium-Catalyzed Redox-Neutral [4 + 1] Annulation of Benzamides and Propargyl Alcohols via C–H Bond Activation. ACS Catalysis, 2017, 7, 2494-2499.	11.2	118
20	Ruthenium(II)-Catalyzed Redox-Neutral [3+2] Annulation of Indoles with Internal Alkynes via C–H Bond Activation: Accessing a Pyrroloindolone Scaffold. Journal of Organic Chemistry, 2017, 82, 5263-5273.	3.2	45
21	Rh(III)-Catalyzed C–H Cyclization of Arylnitrones with Diazo Compounds: Access to 3-Carboxylate Substituted <i>N </i> -Hydroxyindoles. Journal of Organic Chemistry, 2017, 82, 8984-8994.	3.2	42
22	Site-specific indolation of proline-based peptides via copper(<scp>ii</scp>)-catalyzed oxidative coupling of tertiary amine N-oxides. Chemical Communications, 2015, 51, 12571-12573.	4.1	19
23	Design, synthesis and biological evaluation of isoquinoline-based derivatives as novel histone deacetylase inhibitors. Bioorganic and Medicinal Chemistry, 2015, 23, 5881-5890.	3.0	17
24	Design, synthesis and biological evaluation of 4-anilinothieno [2,3-d] pyrimidine-based hydroxamic acid derivatives as novel histone deacetylase inhibitors. Bioorganic and Medicinal Chemistry, 2014, 22, 6146-6155.	3.0	24
25	Temperatureâ€Controlled Divergent Synthesis of Tetrasubstituted Alkenes and Pyrrolo[1,2―a]indole Derivatives via Iridium Catalysis. Asian Journal of Organic Chemistry, 0, , .	2.7	2