
Qusai Al Abdallah

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/10762413/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Aspergillus Galactosaminogalactan Mediates Adherence to Host Constituents and Conceals Hyphal β-Glucan from the Immune System. PLoS Pathogens, 2013, 9, e1003575.	2.1	256
2	The Fungal Exopolysaccharide Galactosaminogalactan Mediates Virulence by Enhancing Resistance to Neutrophil Extracellular Traps. PLoS Pathogens, 2015, 11, e1005187.	2.1	167
3	A Simple and Universal System for Gene Manipulation in Aspergillus fumigatus: <i>In Vitro</i> -Assembled Cas9-Guide RNA Ribonucleoproteins Coupled with Microhomology Repair Templates. MSphere, 2017, 2, .	1.3	130
4	Whole-genome sequencing reveals highly specific gene targeting by in vitro assembled Cas9-ribonucleoprotein complexes in Aspergillus fumigatus. Fungal Biology and Biotechnology, 2018, 5, 11.	2.5	34
5	Role of Aspergillus niger <i>acrA</i> in Arsenic Resistance and Its Use as the Basis for an Arsenic Biosensor. Applied and Environmental Microbiology, 2012, 78, 3855-3863.	1.4	31
6	A Conserved C-Terminal Domain of the Aspergillus fumigatus Developmental Regulator MedA Is Required for Nuclear Localization, Adhesion and Virulence. PLoS ONE, 2012, 7, e49959.	1.1	24
7	The <i>Aspergillus fumigatus</i> farnesyltransferase β-subunit, RamA, mediates growth, virulence, and antifungal susceptibility. Virulence, 2017, 8, 1401-1416.	1.8	20
8	Exploration of Aspergillus fumigatus Ras pathways for novel antifungal drug targets. Frontiers in Microbiology, 2015, 6, 128.	1.5	18
9	A Fungus-Specific Protein Domain Is Essential for RasA-Mediated Morphogenetic Signaling in Aspergillus fumigatus. MSphere, 2016, 1, .	1.3	14
10	Differential requirements of protein geranylgeranylation for the virulence of human pathogenic fungi. Virulence, 2019, 10, 511-526.	1.8	11
11	C-terminus Proteolysis and Palmitoylation Cooperate for Optimal Plasma Membrane Localization of RasA in Aspergillus fumigatus. Frontiers in Microbiology, 2018, 9, 562.	1.5	10
12	SH3 class Ras guanine nucleotide exchange factors are essential for <i>Aspergillus fumigatus</i> invasive growth. Cellular Microbiology, 2019, 21, e13013.	1.1	9