
Sheldon Green

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/10762143/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Sources of Error and Expected Accuracy in Ab Initio One-Electron Operator Properties: The Molecular Dipole Moment. Advances in Chemical Physics, 2007, , 179-209.	0.3	49
2	Quantum calculations for rotational energy transfer in nitrogen molecule collisions. Journal of Chemical Physics, 1996, 104, 7572-7589.	1.2	40
3	Vibration–rotation excitation of CO by hot hydrogen atoms: Comparison of two potential energy surfaces. Journal of Chemical Physics, 1996, 105, 5416-5422.	1.2	12
4	Quantum calculations for line shapes in Raman spectra of molecular nitrogen. Journal of Chemical Physics, 1996, 104, 7590-7598.	1.2	11
5	Excitation of interstellar water by ortho-and para-hydrogen. Astrophysics and Space Science, 1995, 224, 537-538.	0.5	8
6	Collision dynamics for an asymmetric top rotor and a linear rotor: Coupled channel formalism and application to H2O–H2. Journal of Chemical Physics, 1995, 102, 6024-6031.	1.2	53
7	Quantum scattering calculations for vibrational and rotational excitation of CO by hot hydrogen atoms. Journal of Chemical Physics, 1995, 102, 8800-8806.	1.2	19
8	Comment on symmetry of the interaction between an asymmetric rigid rotor and a linear rigid rotor. Journal of Chemical Physics, 1995, 103, 1035-1042.	1.2	12
9	Effects of velocity changing collisions on line shapes of HF in Ar. Journal of Chemical Physics, 1995, 102, 9160-9166.	1.2	49
10	Excitation of Interstellar Water by Ortho-and Para-Hydrogen. , 1995, , 537-538.		0
11	Raman Qâ€branch line shapes as a test of a H2–Ar intermolecular potential. Journal of Chemical Physics, 1994, 101, 15-19.	1.2	9
12	Experimental and theoretical velocity profiles for pure rotational scattering: CO–hot hydrogen atom collisions. Journal of Chemical Physics, 1994, 101, 9499-9505.	1.2	8
13	Spectral line shape parameters for HF in a bath of Ar are accurately predicted by a potential inferred from spectra of the van der Waals dimer. Journal of Chemical Physics, 1994, 100, 891-898.	1.2	58
14	Anisotropic rigid rotor potential energy function for H2O–H2. Journal of Chemical Physics, 1994, 101, 5824-5830.	1.2	78
15	Raman linewidths and rotationally inelastic collision rates in nitrogen. Journal of Chemical Physics, 1993, 98, 257-268.	1.2	19
16	Improved collisional excitation rates for interstellar water. Astrophysical Journal, Supplement Series, 1993, 85, 181.	3.0	115
17	Comment on: Heterodyne spectroscopy of carbon monoxide lines perturbed by hydrogen and helium. Journal of Chemical Physics, 1992, 97, 1610-1611.	1.2	7
18	Comment on broadening of water microwave lines by collisions with helium atoms. Journal of Chemical Physics, 1992, 96, 8150-8156.	1.2	21

#	Article	IF	CITATIONS
19	Calculation of Pressure Broadened Spectral Line Shapes Including Collisional Transfer of Intensity. , 1992, , 257-283.		4
20	A simple ab initio calculation for energy transfer in collisions of hot hydrogen atoms with carbon dioxide. Chemical Physics Letters, 1991, 177, 508-516.	1.2	2
21	Pressure broadening data as a test of a recently proposed Ar–H2O interaction potential. Journal of Chemical Physics, 1991, 95, 3888-3890.	1.2	13
22	Calculations of H2O microwave line broadening in collisions with He atoms: Sensitivity to potential energy surfaces. Journal of Chemical Physics, 1991, 94, 1346-1359.	1.2	35
23	Theoretical line shapes for rotational spectra of HCl in Ar. Journal of Chemical Physics, 1990, 92, 4679-4685.	1.2	28
24	Raman Qâ€branch line shapes as a test of the H2–Ar intermolecular potential. Journal of Chemical Physics, 1990, 93, 1496-1501.	1.2	37
25	Dicke narrowing of the polarized Stokes–Raman Q branch of the v=0→1 transition of D2 in He. Journal of Chemical Physics, 1989, 91, 3846-3853.	1.2	43
26	Comment on linewidths and shifts in the Stokes–Raman Q branch of D2 in He. Journal of Chemical Physics, 1989, 91, 52-55.	1.2	24
27	Pressure broadening and line coupling in bending bands of CO2. Journal of Chemical Physics, 1989, 90, 3603-3614.	1.2	65
28	Accurate collision-induced line-coupling parameters for the fundamental band of CO in He: Close coupling and coupled states scattering calculations. Journal of Quantitative Spectroscopy and Radiative Transfer, 1988, 39, 33-42.	1.1	59
29	Recent advances in pressure broadening: experiment and theory. Journal of Molecular Structure, 1988, 190, 435-446.	1.8	13
30	Intermolecular potential for thermal H2O–He collisions. Journal of Chemical Physics, 1988, 89, 1401-1407.	1.2	36
31	Effect of nuclear hyperfine structure on microwave spectral pressure broadening. Journal of Chemical Physics, 1988, 88, 7331-7336.	1.2	22
32	Polarized D2 Stokes–Raman Q branch broadened by He: A numerical calculation. Journal of Chemical Physics, 1988, 88, 4113-4119.	1.2	29
33	Collisional excitation of interstellar water. Astrophysical Journal, Supplement Series, 1988, 68, 287.	3.0	30
34	Test of a modified sudden approximation for rotational excitation in He + CH3CN. Chemical Physics, 1987, 112, 15-22.	0.9	18
35	Collisional excitation of interstellar cyclopropenylidene. Astrophysical Journal, Supplement Series, 1987, 65, 175.	3.0	13
36	Effect of the potential well on low temperature pressure broadening in CO–He. Journal of Chemical Physics, 1986, 85, 1333-1335.	1.2	48

#	Article	IF	CITATIONS
37	Accuracy of the energyâ€corrected sudden (ECS) scaling procedure for rotational excitation of CO by collisions with Ar. Journal of Chemical Physics, 1986, 84, 3865-3869.	1.2	19
38	Calculations of pressure-broadened linewidhts for CO in Ar. Journal of Quantitative Spectroscopy and Radiative Transfer, 1985, 33, 299-305.	1.1	12
39	Calculation of pressure broadening parameters for the CO–He system at low temperatures. Journal of Chemical Physics, 1985, 82, 4548-4550.	1.2	43
40	Rotational excitation in low-energy methyl cyanide-helium collisions. The Journal of Physical Chemistry, 1985, 89, 5289-5294.	2.9	10
41	Accuracy of the IOS approximation for highly inelastic Rî—,T collisional energy transfer. CO-Ar. Chemical Physics Letters, 1984, 112, 436-440.	1.2	21
42	Accuracy of the IOS approximation for highly inelastic R-T collisional energy transfer. Chemical Physics Letters, 1983, 98, 467-471.	1.2	16
43	Theoretical three-dimensional potential-energy surface for the reaction of Be with HF. Chemical Physics, 1983, 78, 93-105.	0.9	51
44	M dependence in the analysis of NH3–He microwave double resonance experiments. Journal of Chemical Physics, 1983, 78, 2170-2174.	1.2	13
45	Methyl Cyanide as a Probe of the Temperature and Density in SgrB2; Quasi-Equilibrium in Molecular Rotational Levels. Astrophysics and Space Science Library, 1982, , 391-397.	1.0	4
46	Electron-gas He-sio potential hypersurface for vibrational- rotational excitations through collisions. Chemical Physics Letters, 1981, 84, 380-384.	1.2	14
47	Energy transfer in NH3–He collisions. Journal of Chemical Physics, 1980, 73, 2740-2750.	1.2	101
48	On the use of pressure broadening data to assess the accuracy of CO–He interaction potentials. Journal of Chemical Physics, 1980, 73, 5391-5393.	1.2	38
49	Surprisal analysis of rotational—translational energy transfer: Non-linear versus linear rotors. Chemical Physics, 1979, 40, 1-10.	0.9	38
50	Vibrational dependence of pressure induced spectral linewidths and line shifts: Application of the infinite order sudden scattering approximation. Journal of Chemical Physics, 1979, 70, 4686-4693.	1.2	42
51	Rotational excitation of symmetric top molecules by collisions with atoms. II. Infinite order sudden approximation. Journal of Chemical Physics, 1979, 70, 816.	1.2	111
52	Dynamics of the collinear beryllium + hydrofluoric acid .fwdarw. beryllium fluoride + hydrogen reaction. The Journal of Physical Chemistry, 1979, 83, 920-922.	2.9	18
53	Rotational inelasticity in high-energy H2î—,H2 collisions. Chemical Physics, 1978, 28, 319-329.	0.9	9
54	Computational test of the infinite order sudden approximation for excitation of linear rigid rotors by collisions with atoms. Chemical Physics, 1978, 31, 425-431.	0.9	18

#	Article	IF	CITATIONS
55	On the amount of information in rotational relaxation experiments with application to microwave transient T1 and T2 rates. Journal of Chemical Physics, 1978, 69, 4076-4082.	1.2	24
56	Effect of molecular anisotropy on beam scattering measurements. Journal of Chemical Physics, 1978, 69, 598-605.	1.2	19
57	The coupled states approximation for scattering of two diatoms. Journal of Chemical Physics, 1978, 68, 2562.	1.2	72
58	Theoretical study of collinear Be+FH(v1) →BeF(v2) +H. Journal of Chemical Physics, 1978, 69, 3790-3806.	1.2	45
59	Comment of fitting ab initio intermolecular potentials for scattering calculations. Journal of Chemical Physics, 1977, 67, 715-717.	1.2	30
60	Rotational excitation of linear molecules by collisions with atoms: Comparison of classical and quantum methods. Journal of Chemical Physics, 1977, 67, 2317.	1.2	77
61	Computational tests of the coupled states angular momentum decoupling approximation for NMR spin–lattice relaxation cross sections. Journal of Chemical Physics, 1977, 67, 225-228.	1.2	15
62	Validity of approximate methods in molecular scattering. III. Effective potential and coupled states approximations for differential and gas kinetic cross sections. Journal of Chemical Physics, 1977, 66, 3085-3093.	1.2	31
63	Lowâ€ŧemperature rotational relaxation in gaseous H2 and D2. Journal of Chemical Physics, 1977, 66, 3021-3030.	1.2	48
64	Computational tests of angular momentum decoupling approximations for pressure broadening cross sections. Journal of Chemical Physics, 1977, 66, 1409-1412.	1.2	47
65	On the factorization and fitting of molecular scattering information. Journal of Chemical Physics, 1977, 67, 5661-5675.	1.2	204
66	Rotational excitation in collisions between two rigid rotors: Alternate angular momentum coupling and pressure broadening of HCl BY H2. Chemical Physics Letters, 1977, 47, 119-122.	1.2	26
67	Rotational excitation of symmetric top molecules by collisions with atoms: Close coupling, coupled states, and effective potential calculations for NH3–He. Journal of Chemical Physics, 1976, 64, 3463.	1.2	195
68	Theoretical investigation of protonated carbon dioxide. Chemical Physics, 1976, 17, 479-485.	0.9	38
69	Accuracy of decoupling approximations for rotational excitation: low-energy COî—,He collisions. Chemical Physics Letters, 1976, 38, 293-296.	1.2	24
70	On the accuracy of the ''decoupledlâ€dominant'' approximation for atom–molecule scattering of Chemical Physics, 1976, 65, 68-70.	. Journal 1.2	12
71	Comment on the accuracy of Rabitz' effective potential approximation for rotational excitation by collisions. Journal of Chemical Physics, 1975, 62, 3568.	1.2	31
72	Rotational excitation in H2–H2 collisions: Close oupling calculations. Journal of Chemical Physics, 1975, 62, 2271-2277.	1.2	288

#	Article	IF	CITATIONS
73	Validity of central field approximations in molecular scattering: Low energy CO–He collisions. Journal of Chemical Physics, 1975, 63, 2000-2009.	1.2	53
74	Validity of approximate methods in molecular scattering: Thermal HCl–He collisions. Journal of Chemical Physics, 1975, 63, 4198-4205.	1.2	71
75	Hartree–Fock and Gordon–Kim interaction potentials for scattering of closedâ€shell molecules by atoms: (H2CO,He) and (H2,Li+). Journal of Chemical Physics, 1975, 63, 1154-1161.	1.2	39
76	Rotational Excitation of HCN by Collisions. Astrophysical Journal, 1974, 191, 653.	1.6	146
77	Calculated properties for No X2 Πand A 2Σ+. II. Configuration interaction. Chemical Physics Letters, 1973, 23, 115-119.	1.2	32
78	Calculated properties for ClF. Journal of Chemical Physics, 1973, 58, 3117.	1.2	23
79	Dipole moment and hyperfine constants of ODA2Σ+fromab initiocalculations. Journal of Chemical Physics, 1973, 58, 4327-4330.	1.2	10
80	Electric Dipole Moment of Diatomic Molecules by Configuration Interaction. IV. Basis Set Dependence in COa3Φ. Journal of Chemical Physics, 1972, 57, 2830-2835.	1.2	16
81	Electric Dipole Moment of Diatomic Molecules by Configuration Interaction. III. Open‧hell Molecules CO a3II and CS A 1II. Journal of Chemical Physics, 1972, 56, 739-744.	1.2	30
82	Electric Dipole Moment of Diatomic Molecules by Configuration Interaction. V. Two States of 2α+ Symmetry in CN. Journal of Chemical Physics, 1972, 57, 4694-4698.	1.2	24
83	Calculated Potential-Energy Curves for CH+. Physical Review A, 1972, 5, 1614-1618.	1.0	130
84	Electric Dipole Moment of Diatomic Molecules by Configuration Interaction. I. Closedâ€5hell Molecules. Journal of Chemical Physics, 1971, 54, 827-832.	1.2	95
85	Quadrupole Moment of Li. Physical Review A, 1971, 4, 251-253.	1.0	41
86	Electric Dipole Moment of Diatomic Molecules by Configuration Interaction. II Fixed ore Approximation. Journal of Chemical Physics, 1971, 54, 3051-3053.	1.2	13
87	Incorrect Dissociation of CO in the Restricted Hartree–Fock Approximation. Journal of Chemical Physics, 1970, 52, 3100-3104.	1.2	30