
Frances Plane

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/10761471/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Endothelium-dependent hyperpolarization: a role in the control of vascular tone. Trends in Pharmacological Sciences, 1995, 16, 23-30.	8.7	432
2	Native and oxidized lowâ€density lipoproteins have different inhibitory effects on endotheliumâ€derived relaxing factor in the rabbit aorta. British Journal of Pharmacology, 1990, 100, 21-26.	5.4	170
3	Heteromultimeric Kv1 Channels Contribute to Myogenic Control of Arterial Diameter. Circulation Research, 2005, 96, 216-224.	4.5	114
4	WHAT'S WHERE AND WHY AT A VASCULAR MYOENDOTHELIAL MICRODOMAIN SIGNALLING COMPLEX. Clinical and Experimental Pharmacology and Physiology, 2009, 36, 67-76.	1.9	106
5	Endothelial Ca ²⁺ wavelets and the induction of myoendothelial feedback. American Journal of Physiology - Cell Physiology, 2012, 302, C1226-C1242.	4.6	102
6	Evidence that different mechanisms underlie smooth muscle relaxation to nitric oxide and nitric oxide donors in the rabbit isolated carotid artery. British Journal of Pharmacology, 1998, 123, 1351-1358.	5.4	85
7	Investigation of the inhibitory effects of homocysteine and copper on nitric oxideâ€mediated relaxation of rat isolated aorta. British Journal of Pharmacology, 1999, 126, 1034-1040.	5.4	83
8	Oxidative modification of lowâ€density lipoproteins and the inhibition of relaxations mediated by endotheliumâ€derived nitric oxide in rabbit aorta. British Journal of Pharmacology, 1992, 105, 216-222.	5.4	74
9	Multiple pathways underlying endotheliumâ€dependent relaxation in the rabbit isolated femoral artery. British Journal of Pharmacology, 1995, 115, 31-38.	5.4	54
10	Influence of contractile agonists on the mechanism of endotheliumâ€dependent relaxation in rat isolated mesenteric artery. British Journal of Pharmacology, 1996, 119, 191-193.	5.4	53
11	Interactions between endothelium-derived relaxing factors in the rat hepatic artery: focus on regulation of EDHF. British Journal of Pharmacology, 1998, 124, 992-1000.	5.4	49
12	Evidence that potassium channels make a major contribution to SINâ€1â€evoked relaxation of rat isolated mesenteric artery. British Journal of Pharmacology, 1996, 119, 1557-1562.	5.4	45
13	Endothelial Feedback and the Myoendothelial Projection. Microcirculation, 2012, 19, 416-422.	1.8	45
14	Probucol and other antioxidants prevent the inhibition of endothelium-dependent relaxation by low density lipoproteins. Atherosclerosis, 1993, 103, 73-79.	0.8	43
15	Effect of copper on nitric oxide synthase and guanylyl cyclase activity in the rat isolated aorta. British Journal of Pharmacology, 1997, 121, 345-350.	5.4	36
16	Involvement of cyclic GMP and potassium channels in relaxation evoked by the nitric oxide donor, diethylamine NONOate, in the rat small isolated mesenteric artery. Naunyn-Schmiedeberg's Archives of Pharmacology, 2001, 364, 220-225.	3.0	30
17	Activation of endothelial IK Ca channels underlies NO-dependent myoendothelial feedback. Vascular Pharmacology, 2015, 74, 130-138.	2.1	27
18	Relaxation to authentic nitric oxide and SIN-1 in rat isolated mesenteric arteries: variable role for smooth muscle hyperpolarization. British Journal of Pharmacology, 2001, 133, 665-672.	5.4	23

FRANCES PLANE

#	Article	IF	CITATIONS
19	Impaired Endothelium-Dependent Hyperpolarization Underlies Endothelial Dysfunction during Early Metabolic Challenge: Increased ROS Generation and Possible Interference with NO Function. Journal of Pharmacology and Experimental Therapeutics, 2019, 371, 567-582.	2.5	20
20	Endothelial calcium-activated potassium channels as therapeutic targets to enhance availability of nitric oxide. Canadian Journal of Physiology and Pharmacology, 2012, 90, 739-752.	1.4	19
21	High fructose consumption in pregnancy alters the perinatal environment without increasing metabolic disease in the offspring. Reproduction, Fertility and Development, 2016, 28, 2007.	0.4	18
22	Unraveling Interactions Between Anesthetics and the Endothelium. Anesthesia and Analgesia, 2016, 122, 330-348.	2.2	15
23	Inhibition of endothelium-dependent relaxation by oxidized low-density lipoproteins. Biochemical Society Transactions, 1990, 18, 1177-1178.	3.4	13
24	Deletion of murine <i>slc29a4</i> modifies vascular responses to adenosine and 5â€hydroxytryptamine in a sexually dimorphic manner. Physiological Reports, 2020, 8, e14395.	1.7	11
25	Triton X-100 inhibits L-type voltage-operated calcium channels. Canadian Journal of Physiology and Pharmacology, 2013, 91, 316-324.	1.4	7
26	The Endothelium: The Vascular Information Exchange. , 0, , .		1
27	Release of nitric oxide is modulated by endothelial cell membrane potential in rat basilar artery. FASEB Journal, 2006, 20, A1166.	0.5	1
28	Mechanisms underlying nitric oxideâ€mediated modulation of vasoconstriction in small arteries. FASEB Journal, 2007, 21, A1232.	0.5	0
29	Activation of endothelial Ca2+â€activated potassium channels can improve endothelial function in basilar arteries from diabetic rats. FASEB Journal, 2007, 21, A1231.	0.5	0
30	Nitric oxideâ€dependent relaxation is modulated by intermediate conductance Ca2+â€activated potassium channels in rat mesenteric resistance arteries. FASEB Journal, 2007, 21, A1230.	0.5	0
31	Nerveâ€evoked contraction of isolated resistance arteries is modulated by proteaseâ€activated receptors (1079.16). FASEB Journal, 2014, 28, 1079.16.	0.5	0
32	Activators of endothelial calciumâ€activated potassium channels enhance the availability of NO released in response to shear stress (1079.22). FASEB Journal, 2014, 28, 1079.22.	0.5	0
33	Vascular Endothelium in Health and Disease. , 2020, , 1-18.		0