Qin Liu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/10761137/publications.pdf

Version: 2024-02-01

18	1,517	16	18
papers	citations	h-index	g-index
18	18	18	2746
all docs	docs citations	times ranked	citing authors

#	Article	IF	Citations
1	A potassium–tellurium battery. Energy Storage Materials, 2020, 28, 10-16.	18.0	49
2	Approaching the voltage and energy density limits of potassiumâ€"selenium battery chemistry in a concentrated ether-based electrolyte. Chemical Science, 2020, 11, 6045-6052.	7.4	38
3	A trifunctional Ni–N/P–O-codoped graphene electrocatalyst enables dual-model rechargeable Zn–CO ₂ /Zn–O ₂ batteries. Journal of Materials Chemistry A, 2019, 7, 2575-2580.	10.3	53
4	Concentrated electrolytes unlock the full energy potential of potassium-sulfur battery chemistry. Energy Storage Materials, 2019, 18, 470-475.	18.0	72
5	The synthesis and synergistic catalysis of iron phthalocyanine and its graphene-based axial complex for enhanced oxygen reduction. Nano Energy, 2018, 46, 347-355.	16.0	136
6	Functionalization of multi-walled carbon nanotubes with iron phthalocyanine via a liquid chemical reaction for oxygen reduction in alkaline media. Journal of Power Sources, 2018, 389, 260-266.	7.8	55
7	A photo-responsive bifunctional electrocatalyst for oxygen reduction and evolution reactions. Nano Energy, 2018, 43, 130-137.	16.0	105
8	A porous Zn cathode for Li–CO ₂ batteries generating fuel-gas CO. Journal of Materials Chemistry A, 2018, 6, 13952-13958.	10.3	66
9	Highly exposed Fe–N ₄ active sites in porous poly-iron-phthalocyanine based oxygen reduction electrocatalyst with ultrahigh performance for air cathode. Dalton Transactions, 2017, 46, 1803-1810.	3.3	32
10	Co-intercalation of multiple active units into graphene by pyrolysis of hydrogen-bonded precursors for zinc–air batteries and water splitting. Journal of Materials Chemistry A, 2017, 5, 20882-20891.	10.3	34
11	Si–C–F decorated porous carbon materials: A new class of electrocatalysts for the oxygen reduction reaction. Journal of Materials Chemistry A, 2016, 4, 7924-7929.	10.3	39
12	Scalable synthesis of nano-sandwich N-doped carbon materials with hierarchical-structure for energy conversion and storage. RSC Advances, 2016, 6, 93318-93324.	3.6	12
13	Sandwich-type porous carbon/sulfur/polyaniline composite as cathode material for high-performance lithium–sulfur batteries. RSC Advances, 2016, 6, 104591-104596.	3.6	18
14	Scalable Fabrication of Nanoporous Carbon Fiber Films as Bifunctional Catalytic Electrodes for Flexible Znâ€Air Batteries. Advanced Materials, 2016, 28, 3000-3006.	21.0	626
15	Facile synthesis of nitrogen and fluorine co-doped carbon materials as efficient electrocatalysts for oxygen reduction reactions in air-cathode microbial fuel cells. Journal of Materials Chemistry A, 2015, 3, 6873-6877.	10.3	76
16	Ternary-layered nitrogen-doped graphene/sulfur/ polyaniline nanoarchitecture for the high-performance of lithium–sulfur batteries. Journal of Materials Chemistry A, 2015, 3, 8022-8027.	10.3	49
17	Phosphorus-doped carbon derived from cellulose phosphate as efficient catalyst for air-cathode in microbial fuel cells. Journal of Power Sources, 2014, 261, 245-248.	7.8	52
18	Chromatographic Evaluation of Octadecyl-Bonded SiO2/SiO2-Based Stationary Phase for Reversed-Phase High Performance Liquid Chromatography. Journal of Inorganic and Organometallic Polymers and Materials, 2013, 23, 1445-1450.	3.7	5