
Thomas Bein

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1076099/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	2D/3D Hybrid Cs ₂ AgBiBr ₆ Double Perovskite Solar Cells: Improved Energy Level Alignment for Higher Contactâ€6electivity and Large Open Circuit Voltage. Advanced Energy Materials, 2022, 12, 2103215.	19.5	62
2	A Novel Electrically Conductive Perylene Diimideâ€Based MOFâ€74 Series Featuring Luminescence and Redox Activity. Small Structures, 2022, 3, .	12.0	12
3	ECMO during the COVID-19 pandemic: moving from rescue therapy to more reasonable indications. European Respiratory Journal, 2022, 59, 2103262.	6.7	11
4	Mesoporous Biodegradable Magnesium Phosphate-Citrate Nanocarriers Amplify Methotrexate Anticancer Activity in HeLa Cells. Bioconjugate Chemistry, 2022, 33, 566-575.	3.6	2
5	Helical Anthracene–Ethyne-Based MOF-74 Analogue. Crystal Growth and Design, 2022, 22, 2849-2853.	3.0	2
6	Covalent Organic Framework Nanoplates Enable Solution-Processed Crystalline Nanofilms for Photoelectrochemical Hydrogen Evolution. Journal of the American Chemical Society, 2022, 144, 10291-10300.	13.7	33
7	Silverâ€Bismuth Based 2D Double Perovskites (4FPEA) ₄ AgBiX ₈ (<i>X</i> Â= Cl, Br,) Tj Advanced Optical Materials, 2022, 10, .	ETQq1 1 7.3	0.784314 rgE 17
8	Energy Efficient Ultrahigh Flux Separation of Oily Pollutants from Water with Superhydrophilic Nanoscale Metal–Organic Framework Architectures. Angewandte Chemie - International Edition, 2021, 60, 5519-5526.	13.8	66
9	Energy Efficient Ultrahigh Flux Separation of Oily Pollutants from Water with Superhydrophilic Nanoscale Metal–Organic Framework Architectures. Angewandte Chemie, 2021, 133, 5579-5586.	2.0	8
10	Optoelectronic processes in covalent organic frameworks. Chemical Society Reviews, 2021, 50, 1813-1845.	38.1	264
11	Dehydrogenative 6ï€ heterocyclization under visible light irradiation and mechanistic insights. Organic Chemistry Frontiers, 2021, 8, 3788-3795.	4.5	2
12	Influence of crystallisation on the structural and optical properties of lead-free Cs ₂ AgBiBr ₆ perovskite crystals. CrystEngComm, 2021, 23, 6848-6854.	2.6	4
13	Curcumin Encapsulated in Crosslinked Cyclodextrin Nanoparticles Enables Immediate Inhibition of Cell Growth and Efficient Killing of Cancer Cells. Nanomaterials, 2021, 11, 489.	4.1	18
14	Synergistic Combination of Calcium and Citrate in Mesoporous Nanoparticles Targets Pleural Tumors. CheM, 2021, 7, 480-494.	11.7	11
15	Fast-Switching Vis–IR Electrochromic Covalent Organic Frameworks. Journal of the American Chemical Society, 2021, 143, 7351-7357.	13.7	95
16	Organ donation after controlled cardiocirculatory death: confidence by clarity. Intensive Care Medicine, 2021, 47, 325-327.	8.2	8
17	Mesoporous Silica Nanoparticles as pH-Responsive Carrier for the Immune-Activating Drug Resiquimod Enhance the Local Immune Response in Mice. ACS Nano, 2021, 15, 4450-4466.	14.6	94
18	Increasing Photostability of Inverted Nonfullerene Organic Solar Cells by Using Fullerene Derivative Additives. ACS Applied Materials & Interfaces, 2021, 13, 19072-19084.	8.0	37

#	Article	IF	CITATIONS
19	Titelbild: An Electrically Conducting Threeâ€Dimensional Iron–Catecholate Porous Framework (Angew.) Tj ETQq	1 _{2.0} 0.784	314 rgBT 0
20	Isoreticular Crystallization of Highly Porous Cubic Covalent Organic Cage Compounds**. Angewandte Chemie - International Edition, 2021, 60, 17455-17463.	13.8	34
21	IsoretikulÃæ Kristallisation von hochporösen kubischen kovalentorganischen Kägverbindungen**. Angewandte Chemie, 2021, 133, 17595-17604.	2.0	7
22	The Bottlenecks of Cs ₂ AgBiBr ₆ Solar Cells: How Contacts and Slow Transients Limit the Performance. Advanced Optical Materials, 2021, 9, 2100202.	7.3	35
23	What's new in intensive care: environmental sustainability. Intensive Care Medicine, 2021, 47, 903-905.	8.2	13
24	Frontispiece: Isoreticular Crystallization of Highly Porous Cubic Covalent Organic Cage Compounds. Angewandte Chemie - International Edition, 2021, 60, .	13.8	0
25	An Electrically Conducting Threeâ€Dimensional Iron–Catecholate Porous Framework. Angewandte Chemie, 2021, 133, 18213-18220.	2.0	4
26	Frontispiz: Isoretikuläe Kristallisation von hochporösen kubischen kovalentorganischen Kägverbindungen. Angewandte Chemie, 2021, 133, .	2.0	0
27	An Electrically Conducting Threeâ€Dimensional Iron–Catecholate Porous Framework. Angewandte Chemie - International Edition, 2021, 60, 18065-18072.	13.8	24
28	MOF-74(M) Films Obtained through Vapor-Assisted Conversion—Impact on Crystal Orientation and Optical Properties. Chemistry of Materials, 2021, 33, 5896-5904.	6.7	16
29	1,10-Phenanthroline as an Efficient Bifunctional Passivating Agent for MAPbI ₃ Perovskite Solar Cells. ACS Applied Materials & Interfaces, 2021, 13, 32894-32905.	8.0	13
30	Design of High-Performance Lead-Free Quaternary Antiperovskites for Photovoltaics via Ion Type Inversion and Anion Ordering. Journal of the American Chemical Society, 2021, 143, 12369-12379.	13.7	24
31	Overcoming the Challenges of Freestanding Tin Oxideâ€Based Composite Anodes to Achieve High Capacity and Increased Cycling Stability. Advanced Functional Materials, 2021, 31, 2106373.	14.9	9
32	Ultraâ€Thin Protective Coatings for Sustained Photoelectrochemical Water Oxidation with Mo:BiVO ₄ . Advanced Functional Materials, 2021, 31, 2011210.	14.9	32
33	Highly conductive titania supported iridium oxide nanoparticles with low overall iridium density as OER catalyst for large-scale PEM electrolysis. Applied Materials Today, 2021, 24, 101134.	4.3	28
34	Selective functionalization of the 1 <i>H</i> -imidazo[1,2- <i>b</i>]pyrazole scaffold. A new potential non-classical isostere of indole and a precursor of push–pull dyes. Chemical Science, 2021, 12, 12993-13000.	7.4	7
35	Roadmap on organic–inorganic hybrid perovskite semiconductors and devices. APL Materials, 2021, 9, .	5.1	102
36	Complete countrywide mortality in COVID patients receiving ECMO in Germany throughout the first three waves of the pandemic. Critical Care, 2021, 25, 413.	5.8	51

#	Article	IF	CITATIONS
37	ECMO use in Germany: An analysis of 29,929 ECMO runs. PLoS ONE, 2021, 16, e0260324.	2.5	18
38	Efficient OER Catalyst with Low Ir Volume Density Obtained by Homogeneous Deposition of Iridium Oxide Nanoparticles on Macroporous Antimonyâ€Đoped Tin Oxide Support. Advanced Functional Materials, 2020, 30, 1906670.	14.9	95
39	Stressors and strains of next of kin of patients with ARDS in intensive care: A qualitative interview study using a stress–strain approach. Intensive and Critical Care Nursing, 2020, 57, 102783.	2.9	8
40	Sn-Doped Hematite for Photoelectrochemical Water Splitting: The Effect of Sn Concentration. Zeitschrift Fur Physikalische Chemie, 2020, 234, 683-698.	2.8	10
41	Climate change, global warming, and intensive care. Intensive Care Medicine, 2020, 46, 485-487.	8.2	23
42	Cellulose Nanocrystal-Templated Tin Dioxide Thin Films for Gas Sensing. ACS Applied Materials & Interfaces, 2020, 12, 12639-12647.	8.0	19
43	V(III)-Doped Nickel Oxide-Based Nanocatalysts for Electrochemical Water Splitting: Influence of Phase, Composition, and Doping on the Electrocatalytic Activity. Chemistry of Materials, 2020, 32, 10394-10406.	6.7	14
44	Optoelectronic Properties of Cs ₂ AgBiBr ₆ Thin Films: The Influence of Precursor Stoichiometry. ACS Applied Energy Materials, 2020, 3, 11597-11609.	5.1	27
45	Highly conducting Wurster-type twisted covalent organic frameworks. Chemical Science, 2020, 11, 12843-12853.	7.4	48
46	Local Disorder at the Phase Transition Interrupts Ambipolar Charge Carrier Transport in Large Crystal Methylammonium Lead Iodide Thin Films. Journal of Physical Chemistry C, 2020, 124, 20757-20764.	3.1	0
47	Prospects of lead-free perovskite-inspired materials for photovoltaic applications. Energy and Environmental Science, 2020, 13, 4691-4716.	30.8	47
48	Ensuring editorial continuity and quality of science during the COVID-19 storm: the ICM experience. Intensive Care Medicine, 2020, 46, 1918-1920.	8.2	2
49	Organâ€Restricted Vascular Delivery of Nanoparticles for Lung Cancer Therapy. Advanced Therapeutics, 2020, 3, 2000017.	3.2	7
50	Influence of quality of intensive care on quality of life/return to work in survivors of the acute respiratory distress syndrome: prospective observational patient cohort study (DACAPO). BMC Public Health, 2020, 20, 861.	2.9	18
51	Particle-Size-Dependent Delivery of Antitumoral miRNA Using Targeted Mesoporous Silica Nanoparticles. Pharmaceutics, 2020, 12, 505.	4.5	27
52	How photocorrosion can trick you: a detailed study on low-bandgap Li doped CuO photocathodes for solar hydrogen production. Nanoscale, 2020, 12, 7766-7775.	5.6	18
53	Formation of stable 2D methylammonium antimony iodide phase for lead-free perovskite-like solar cells [*] . JPhys Energy, 2020, 2, 024007.	5.3	13
54	Nanocelluloseâ€Mediated Transition of Lithiumâ€Rich Pseudoâ€Quaternary Metal Oxide Nanoparticles into Lithium Nickel Cobalt Manganese Oxide (NCM) Nanostructures. ChemNanoMat, 2020, 6, 618-628.	2.8	1

#	Article	IF	CITATIONS
55	When more could be industry-driven: the case of the extracorporeal treatment of sepsis. Intensive Care Medicine, 2019, 45, 1622-1625.	8.2	6
56	Focus on long-term cognitive, psychological and physical impairments after critical illness. Intensive Care Medicine, 2019, 45, 1466-1468.	8.2	20
57	Building Single-Layer Titania Mesopores One by One. Matter, 2019, 1, 306-308.	10.0	1
58	Tin Oxide Based Nanomaterials and Their Application as Anodes in Lithiumâ€lon Batteries and Beyond. ChemSusChem, 2019, 12, 4140-4159.	6.8	82
59	Carbon-templated conductive oxide supports for oxygen evolution catalysis. Nanoscale, 2019, 11, 14285-14293.	5.6	12
60	Flexible freestanding MoS ₂ -based composite paper for energy conversion and storage. Beilstein Journal of Nanotechnology, 2019, 10, 1488-1496.	2.8	8
61	Switching on and off Interlayer Correlations and Porosity in 2D Covalent Organic Frameworks. Journal of the American Chemical Society, 2019, 141, 12570-12581.	13.7	130
62	Propagation of Holes and Electrons in Metal–Organic Frameworks. Journal of Chemical Information and Modeling, 2019, 59, 5057-5064.	5.4	12
63	A highly crystalline anthracene-based MOF-74 series featuring electrical conductivity and luminescence. Nanoscale, 2019, 11, 20949-20955.	5.6	53
64	Perylene-Based Covalent Organic Frameworks for Acid Vapor Sensing. Journal of the American Chemical Society, 2019, 141, 15693-15699.	13.7	212
65	Nanosized Lithium-Rich Cobalt Oxide Particles and Their Transformation to Lithium Cobalt Oxide Cathodes with Optimized High-Rate Morphology. Chemistry of Materials, 2019, 31, 8685-8694.	6.7	10
66	Covalent Organic Framework Films through Electrophoretic Deposition—Creating Efficient Morphologies for Catalysis. Chemistry of Materials, 2019, 31, 10008-10016.	6.7	63
67	Highly active enzymes immobilized in large pore colloidal mesoporous silica nanoparticles. New Journal of Chemistry, 2019, 43, 1671-1680.	2.8	41
68	Excited-State Dynamics in Fully Conjugated 2D Covalent Organic Frameworks. Journal of the American Chemical Society, 2019, 141, 11565-11571.	13.7	89
69	Temperature-Dependent Ambipolar Charge Carrier Mobility in Large-Crystal Hybrid Halide Perovskite Thin Films. ACS Applied Materials & Interfaces, 2019, 11, 20838-20844.	8.0	49
70	Oriented Thin Films of Electroactive Triphenylene Catecholate-Based Two-Dimensional Metal–Organic Frameworks. ACS Nano, 2019, 13, 6711-6719.	14.6	101
71	Degradable Drug Carriers: Vanishing Mesoporous Silica Nanoparticles. Chemistry of Materials, 2019, 31, 4364-4378.	6.7	95
72	A Chemiluminescent Metal–Organic Framework. Chemistry - A European Journal, 2019, 25, 6349-6354.	3.3	27

#	Article	IF	CITATIONS
73	Universal Nanoparticle Wetting Agent for Upscaling Perovskite Solar Cells. ACS Applied Materials & Interfaces, 2019, 11, 12948-12957.	8.0	22
74	Shedding Light on the Moisture Stability of 3D/2D Hybrid Perovskite Heterojunction Thin Films. ACS Applied Energy Materials, 2019, 2, 1011-1018.	5.1	56
75	Scaffold-Induced Diketopyrrolopyrrole Molecular Stacks in a Covalent Organic Framework. Chemistry of Materials, 2019, 31, 2707-2712.	6.7	33
76	Perovskite solar cells with a hybrid electrode structure. AIP Advances, 2019, 9, 125037.	1.3	16
77	Dibenzochrysene enables tightly controlled docking and stabilizes photoexcited states in dual-pore covalent organic frameworks. Nanoscale, 2019, 11, 23338-23345.	5.6	26
78	Cobalt-Catalyzed Electrophilic Aminations with Anthranils: An Expedient Route to Condensed Quinolines. Journal of the American Chemical Society, 2019, 141, 98-103.	13.7	84
79	Single-crystal-like optoelectronic-properties of MAPbI ₃ perovskite polycrystalline thin films. Journal of Materials Chemistry A, 2018, 6, 4822-4828.	10.3	46
80	Grain Boundaries Act as Solid Walls for Charge Carrier Diffusion in Large Crystal MAPI Thin Films. ACS Applied Materials & Interfaces, 2018, 10, 7974-7981.	8.0	40
81	Understanding the Role of Cesium and Rubidium Additives in Perovskite Solar Cells: Trap States, Charge Transport, and Recombination. Advanced Energy Materials, 2018, 8, 1703057.	19.5	184
82	Clickable Multifunctional Large-Pore Mesoporous Silica Nanoparticles as Nanocarriers. Chemistry of Materials, 2018, 30, 644-654.	6.7	34
83	Quality of inter-hospital transportation in 431 transport survivor patients suffering from acute respiratory distress syndrome referred to specialist centers. Annals of Intensive Care, 2018, 8, 5.	4.6	19
84	Making Ultrafast Highâ€Capacity Anodes for Lithiumâ€lon Batteries via Antimony Doping of Nanosized Tin Oxide/Graphene Composites. Advanced Functional Materials, 2018, 28, 1706529.	14.9	31
85	Influence of Fermi Level Alignment with Tin Oxide on the Hysteresis of Perovskite Solar Cells. ACS Applied Materials & Interfaces, 2018, 10, 11414-11419.	8.0	79
86	On-Surface Synthesis of Highly Oriented Thin Metal–Organic Framework Films through Vapor-Assisted Conversion. Journal of the American Chemical Society, 2018, 140, 4812-4819.	13.7	144
87	Röhrenförmige Selbstorganisation kovalenter organischer Netzwerke. Angewandte Chemie, 2018, 130, 856-860.	2.0	28
88	Microtubular Selfâ€Assembly of Covalent Organic Frameworks. Angewandte Chemie - International Edition, 2018, 57, 846-850.	13.8	158
89	Oriented Films of Conjugated 2D Covalent Organic Frameworks as Photocathodes for Water Splitting. Journal of the American Chemical Society, 2018, 140, 2085-2092.	13.7	320
90	Covalent Organic Frameworks: Structures, Synthesis, and Applications. Advanced Functional Materials, 2018, 28, 1705553.	14.9	892

#	Article	IF	CITATIONS
91	New Generation Hole Transporting Materials for Perovskite Solar Cells: Amideâ€Based Smallâ€Molecules with Nonconjugated Backbones. Advanced Energy Materials, 2018, 8, 1801605.	19.5	78
92	Enforcing Extended Porphyrin J-Aggregate Stacking in Covalent Organic Frameworks. Journal of the American Chemical Society, 2018, 140, 16544-16552.	13.7	123
93	Electroactive Metalorganic Frameworks. Israel Journal of Chemistry, 2018, 58, 1089-1101.	2.3	25
94	Nanoparticle mediated delivery and small molecule triggered activation of proteins in the nucleus. Nucleus, 2018, 9, 530-542.	2.2	5
95	Why Tinâ€Doping Enhances the Efficiency of Hematite Photoanodes for Water Splitting—The Full Picture. Advanced Functional Materials, 2018, 28, 1804472.	14.9	53
96	Solvatochromic covalent organic frameworks. Nature Communications, 2018, 9, 3802.	12.8	171
97	Identifying and controlling phase purity in 2D hybrid perovskite thin films. Journal of Materials Chemistry A, 2018, 6, 22215-22225.	10.3	59
98	Electronâ€Blocking and Oxygen Evolution Catalyst Layers by Plasmaâ€Enhanced Atomic Layer Deposition of Nickel Oxide. Advanced Materials Interfaces, 2018, 5, 1701531.	3.7	18
99	Hydrazone-based hole transporting material prepared <i>via</i> condensation chemistry as alternative for cross-coupling chemistry for perovskite solar cells. Molecular Systems Design and Engineering, 2018, 3, 734-740.	3.4	19
100	Light-emitting electrochemical cells based on inorganic metal halide perovskite nanocrystals. Journal Physics D: Applied Physics, 2018, 51, 334001.	2.8	32
101	Biocompatible crosslinked β-cyclodextrin nanoparticles as multifunctional carriers for cellular delivery. Nanoscale, 2018, 10, 16284-16292.	5.6	25
102	Nickel Oxide: Electron-Blocking and Oxygen Evolution Catalyst Layers by Plasma-Enhanced Atomic Layer Deposition of Nickel Oxide (Adv. Mater. Interfaces 16/2018). Advanced Materials Interfaces, 2018, 5, 1870079.	3.7	0
103	Directional Charge-Carrier Transport in Oriented Benzodithiophene Covalent Organic Framework Thin Films. ACS Nano, 2017, 11, 2706-2713.	14.6	117
104	Multifunctional Nanoparticles by Coordinative Self-Assembly of His-Tagged Units with Metal–Organic Frameworks. Journal of the American Chemical Society, 2017, 139, 2359-2368.	13.7	171
105	Rock Salt Ni/Co Oxides with Unusual Nanoscaleâ€Stabilized Composition as Water Splitting Electrocatalysts. Advanced Functional Materials, 2017, 27, 1605121.	14.9	72
106	Dual absorber Fe ₂ 0 ₃ /WO ₃ host-guest architectures for improved charge generation and transfer in photoelectrochemical applications. Materials Research Express, 2017, 4, 016409.	1.6	23
107	A biomolecule-assisted, cost-efficient route for growing tunable CuInS ₂ films for green energy application. RSC Advances, 2017, 7, 20219-20230.	3.6	12
108	Controlling crystal growth by chloride-assisted synthesis: Towards optimized charge transport in hybrid halide perovskites. Solar Energy Materials and Solar Cells, 2017, 166, 269-275.	6.2	8

#	Article	IF	CITATIONS
109	Adsorption and Reactive Desorption on Metal–Organic Frameworks: A Direct Strategy for Lactic Acid Recovery. ChemSusChem, 2017, 10, 643-650.	6.8	17
110	Outcome of acute respiratory distress syndrome in university and non-university hospitals in Germany. Critical Care, 2017, 21, 122.	5.8	28
111	Pore wall fluorescence labeling of covalent organic frameworks. CrystEngComm, 2017, 19, 4886-4891.	2.6	30
112	In Situ Study of Degradation in P3HT–Titania-Based Solid-State Dye-Sensitized Solar Cells. ACS Energy Letters, 2017, 2, 991-997.	17.4	23
113	Synthesis of Hybrid Tin Halide Perovskite Solar Cells with Less Hazardous Solvents: Methanol and 1,4â€Đioxane. Zeitschrift Fur Anorganische Und Allgemeine Chemie, 2017, 643, 1704-1711.	1.2	19
114	Charge Transport Limitations in Perovskite Solar Cells: The Effect of Charge Extraction Layers. ACS Applied Materials & Interfaces, 2017, 9, 37655-37661.	8.0	30
115	Spectrally Switchable Photodetection with Near-Infrared-Absorbing Covalent Organic Frameworks. Journal of the American Chemical Society, 2017, 139, 12035-12042.	13.7	181
116	Perovskite Solar Cells: Capturing the Sun: A Review of the Challenges and Perspectives of Perovskite Solar Cells (Adv. Energy Mater. 16/2017). Advanced Energy Materials, 2017, 7, .	19.5	3
117	Impact of Rubidium and Cesium Cations on the Moisture Stability of Multiple-Cation Mixed-Halide Perovskites. ACS Energy Letters, 2017, 2, 2212-2218.	17.4	167
118	Highly stable, phase pure Cs ₂ AgBiBr ₆ double perovskite thin films for optoelectronic applications. Journal of Materials Chemistry A, 2017, 5, 19972-19981.	10.3	509
119	Synthesis and Functionalization of Ordered Largeâ€₽ore Mesoporous Silica Nanoparticles for Biomedical Applications. Chemie-Ingenieur-Technik, 2017, 89, 876-886.	0.8	7
120	In situ study of spray deposited titania photoanodes for scalable fabrication of solid-state dye-sensitized solar cells. Nano Energy, 2017, 40, 317-326.	16.0	35
121	Preparation of Polyfunctional Naphthyridines by Cobalt-Catalyzed Cross-Couplings of Halogenated Naphthyridines with Magnesium and Zinc Organometallics. Organic Letters, 2017, 19, 6384-6387.	4.6	17
122	Design rules for the preparation of low-cost hole transporting materials for perovskite solar cells with moisture barrier properties. Journal of Materials Chemistry A, 2017, 5, 25200-25210.	10.3	49
123	Capturing the Sun: A Review of the Challenges and Perspectives of Perovskite Solar Cells. Advanced Energy Materials, 2017, 7, 1700264.	19.5	295
124	Photoactive and Conducting Covalent Organic Frameworks. Advanced Energy Materials, 2017, 7, 1700387.	19.5	168
125	Nonagglomerated Iron Oxyhydroxide Akaganeite Nanocrystals Incorporating Extraordinary High Amounts of Different Dopants. Chemistry of Materials, 2017, 29, 7223-7233.	6.7	6
126	Oligothiophene-Bridged Conjugated Covalent Organic Frameworks. Journal of the American Chemical Society, 2017, 139, 8194-8199.	13.7	121

#	Article	IF	CITATIONS
127	Talented Mesoporous Silica Nanoparticles. Chemistry of Materials, 2017, 29, 371-388.	6.7	181
128	Validating Metalâ€Organic Framework Nanoparticles for Their Nanosafety in Diverse Biomedical Applications. Advanced Healthcare Materials, 2017, 6, 1600818.	7.6	137
129	Zinc Ferrite Photoanode Nanomorphologies with Favorable Kinetics for Waterâ€Splitting. Advanced Functional Materials, 2016, 26, 4435-4443.	14.9	99
130	Control of Perovskite Crystal Growth by Methylammonium Lead Chloride Templating. Chemistry - an Asian Journal, 2016, 11, 1199-1204.	3.3	28
131	Synchronized Offset Stacking: A Concept for Growing Large-Domain and Highly Crystalline 2D Covalent Organic Frameworks. Journal of the American Chemical Society, 2016, 138, 16703-16710.	13.7	199
132	Intracellular chromobody delivery by mesoporous silica nanoparticles for antigen targeting and visualization in real time. Scientific Reports, 2016, 6, 25019.	3.3	37
133	Hybrid Perovskite/Perovskite Heterojunction Solar Cells. ACS Nano, 2016, 10, 5999-6007.	14.6	276
134	Nanoscale Synthesis of Two Porphyrin-Based MOFs with Gallium and Indium. Inorganic Chemistry, 2016, 55, 5312-5319.	4.0	37
135	Synthesis of Perfectly Oriented and Micrometer-Sized MAPbBr ₃ Perovskite Crystals for Thin-Film Photovoltaic Applications. ACS Energy Letters, 2016, 1, 150-154.	17.4	103
136	Recycling Perovskite Solar Cells To Avoid Lead Waste. ACS Applied Materials & Interfaces, 2016, 8, 12881-12886.	8.0	176
137	Imparting Functionality to MOF Nanoparticles by External Surface Selective Covalent Attachment of Polymers. Chemistry of Materials, 2016, 28, 3318-3326.	6.7	218
138	Associations between ventilator settings during extracorporeal membrane oxygenation for refractory hypoxemia and outcome in patients with acute respiratory distress syndrome: a pooled individual patient data analysis. Intensive Care Medicine, 2016, 42, 1672-1684.	8.2	176
139	Toward Tailored Film Morphologies: The Origin of Crystal Orientation in Hybrid Perovskite Thin Films. Advanced Materials Interfaces, 2016, 3, 1600403.	3.7	67
140	Spray Deposition of Titania Films with Incorporated Crystalline Nanoparticles for Allâ€Solidâ€State Dyeâ€Sensitized Solar Cells Using P3HT. Advanced Functional Materials, 2016, 26, 1498-1506.	14.9	53
141	Synthesis and Reactivity of Triazaphenanthrenes. Organic Letters, 2016, 18, 3158-3161.	4.6	10
142	A Long-Term View on Perovskite Optoelectronics. Accounts of Chemical Research, 2016, 49, 339-346.	15.6	189
143	Highly efficient siRNA delivery from core–shell mesoporous silica nanoparticles with multifunctional polymer caps. Nanoscale, 2016, 8, 4007-4019.	5.6	97
144	Contactless Visualization of Fast Charge Carrier Diffusion in Hybrid Halide Perovskite Thin Films. ACS Photonics, 2016, 3, 255-261.	6.6	26

9

#	Article	IF	CITATIONS
145	Immune response to functionalized mesoporous silica nanoparticles for targeted drug delivery. Nanoscale, 2016, 8, 938-948.	5.6	93
146	Dendronized mesoporous silica nanoparticles provide an internal endosomal escape mechanism for successful cytosolic drug release. Microporous and Mesoporous Materials, 2016, 227, 242-251.	4.4	16
147	Functionalizations of Mixtures of Regioisomeric Aryllithium Compounds by Selective Trapping with Dichlorozirconocene. Angewandte Chemie - International Edition, 2016, 55, 401-404.	13.8	15
148	A Selective Mucin/Methylcellulose Hybrid Gel with Tailored Mechanical Properties. Macromolecular Bioscience, 2016, 16, 567-579.	4.1	28
149	Genetically designed biomolecular capping system for mesoporous silica nanoparticles enables receptor-mediated cell uptake and controlled drug release. Nanoscale, 2016, 8, 8101-8110.	5.6	23
150	Passivation of PbS Quantum Dot Surface with <scp>l</scp> -Glutathione in Solid-State Quantum-Dot-Sensitized Solar Cells. ACS Applied Materials & Interfaces, 2016, 8, 4600-4607.	8.0	22
151	Molecular docking sites designed for the generation of highly crystalline covalent organic frameworks. Nature Chemistry, 2016, 8, 310-316.	13.6	436
152	Nanostructured Ternary FeCrAl Oxide Photocathodes for Water Photoelectrolysis. Journal of the American Chemical Society, 2016, 138, 1860-1867.	13.7	11
153	Lipid bilayer-coated curcumin-based mesoporous organosilica nanoparticles for cellular delivery. Microporous and Mesoporous Materials, 2016, 225, 371-377.	4.4	46
154	Applicability of avidin protein coated mesoporous silica nanoparticles as drug carriers in the lung. Nanoscale, 2016, 8, 8058-8069.	5.6	36
155	Extracorporeal membrane oxygenation: evolving epidemiology and mortality. Intensive Care Medicine, 2016, 42, 889-896.	8.2	382
156	From benzodithiophene to diethoxy-benzodithiophene covalent organic frameworks – structural investigations. CrystEngComm, 2016, 18, 4295-4302.	2.6	27
157	From Highly Crystalline to Outer Surface-Functionalized Covalent Organic Frameworks—A Modulation Approach. Journal of the American Chemical Society, 2016, 138, 1234-1239.	13.7	147
158	Sequential Pore Wall Modification in a Covalent Organic Framework for Application in Lactic Acid Adsorption. Chemistry of Materials, 2016, 28, 626-631.	6.7	189
159	Efficient functionalization of mesoporous MCM-41 with aromatic organo-lithium reagents. Microporous and Mesoporous Materials, 2016, 223, 219-224.	4.4	2
160	Influence of quality of care and individual patient characteristics on quality of life and return to work in survivors of the acute respiratory distress syndrome: protocol for a prospective, observational, multi-centre patient cohort study (DACAPO). BMC Health Services Research, 2015, 15, 563.	2.2	18
161	A Highlyâ€Ordered 3D Covalent Fullerene Framework. Angewandte Chemie - International Edition, 2015, 54, 7577-7581.	13.8	19
162	Ultrasmall Co ₃ O ₄ Nanocrystals Strongly Enhance Solar Water Splitting on Mesoporous Hematite. Advanced Materials Interfaces, 2015, 2, 1500358.	3.7	30

#	Article	IF	CITATIONS
163	Nanocellulose-Assisted Formation of Porous Hematite Nanostructures. Inorganic Chemistry, 2015, 54, 1129-1135.	4.0	17
164	Electron Collection in Host–Guest Nanostructured Hematite Photoanodes for Water Splitting: The Influence of Scaffold Doping Density. ACS Applied Materials & Interfaces, 2015, 7, 4623-4630.	8.0	42
165	Room Temperature Synthesis of Covalent–Organic Framework Films through Vapor-Assisted Conversion. Journal of the American Chemical Society, 2015, 137, 1016-1019.	13.7	257
166	Protease-Mediated Release of Chemotherapeutics from Mesoporous Silica Nanoparticles to <i>ex Vivo</i> Human and Mouse Lung Tumors. ACS Nano, 2015, 9, 2377-2389.	14.6	165
167	Blue-Green Color Tunable Solution Processable Organolead Chloride–Bromide Mixed Halide Perovskites for Optoelectronic Applications. Nano Letters, 2015, 15, 6095-6101.	9.1	461
168	Functionalized PCN-6 metal-organic frameworks. Microporous and Mesoporous Materials, 2015, 216, 51-55.	4.4	17
169	Nanocellulose-Templated Porous Titania Scaffolds Incorporating Presynthesized Titania Nanocrystals. Chemistry of Materials, 2015, 27, 6205-6212.	6.7	23
170	A Closer Look into Two-Step Perovskite Conversion with X-ray Scattering. Journal of Physical Chemistry Letters, 2015, 6, 1265-1269.	4.6	96
171	Stabilization of the Trigonal High-Temperature Phase of Formamidinium Lead Iodide. Journal of Physical Chemistry Letters, 2015, 6, 1249-1253.	4.6	477
172	A low cost azomethine-based hole transporting material for perovskite photovoltaics. Journal of Materials Chemistry A, 2015, 3, 12159-12162.	10.3	260
173	Perovskite cells charge forward. Nature Materials, 2015, 14, 559-561.	27.5	78
174	Guided in Situ Polymerization of MEH-PPV in Mesoporous Titania Photoanodes. ACS Applied Materials & Interfaces, 2015, 7, 10356-10364.	8.0	1
175	Iron-Doped Nickel Oxide Nanocrystals as Highly Efficient Electrocatalysts for Alkaline Water Splitting. ACS Nano, 2015, 9, 5180-5188.	14.6	446
176	Reversible Hydration of CH ₃ NH ₃ PbI ₃ in Films, Single Crystals, and Solar Cells. Chemistry of Materials, 2015, 27, 3397-3407.	6.7	1,133
177	Extracorporeal life support, ethics, and questions at the bedside: how does the end of the pathway look?. Intensive Care Medicine, 2015, 41, 1714-1715.	8.2	12
178	Multifunctional polymer-capped mesoporous silica nanoparticles for pH-responsive targeted drug delivery. Nanoscale, 2015, 7, 7953-7964.	5.6	134
179	Unexpected Photoreactivity in a NO ₂ -Functionalized Aluminum-MOF. Journal of Physical Chemistry C, 2015, 119, 26401-26408.	3.1	9
180	Selective Functionalization of Tetrathiafulvalene Using Mg- and Zn-TMP-Bases: Preparation of Mono-, Di-, Tri-, and Tetrasubstituted Derivatives. Organic Letters, 2015, 17, 5356-5359.	4.6	14

#	Article	IF	CITATIONS
181	MOF nanoparticles coated by lipid bilayers and their uptake by cancer cells. Chemical Communications, 2015, 51, 15752-15755.	4.1	186
182	Lipid-bilayer coated nanosized bimodal mesoporous carbon spheres for controlled release applications. Journal of Materials Chemistry B, 2015, 3, 9323-9329.	5.8	6
183	Functionalization of Quinoxalines by Using TMP Bases: Preparation of Tetracyclic Heterocycles with High Photoluminescene Quantum Yields. Chemistry - A European Journal, 2015, 21, 1102-1107.	3.3	20
184	Extraction of Photogenerated Electrons and Holes from a Covalent Organic Framework Integrated Heterojunction. Journal of the American Chemical Society, 2014, 136, 17802-17807.	13.7	354
185	On the road towards electroactive covalent organic frameworks. Chemical Communications, 2014, 50, 5531-5546.	4.1	237
186	Ultrasmall Dispersible Crystalline Nickel Oxide Nanoparticles as Highâ€Performance Catalysts for Electrochemical Water Splitting. Advanced Functional Materials, 2014, 24, 3123-3129.	14.9	303
187	Tailoring the Morphology of Mesoporous Titania Thin Films through Biotemplating with Nanocrystalline Cellulose. Journal of the American Chemical Society, 2014, 136, 5930-5937.	13.7	97
188	Solution Depositionâ€Conversion for Planar Heterojunction Mixed Halide Perovskite Solar Cells. Advanced Energy Materials, 2014, 4, 1400355.	19.5	325
189	Turn-on fluorescence triggered by selective internal dye replacement in MOFs. Chemical Communications, 2014, 50, 3599.	4.1	40
190	Solutionâ€Processed Hydrogen Molybdenum Bronzes as Highly Conductive Anode Interlayers in Efficient Organic Photovoltaics. Advanced Energy Materials, 2014, 4, 1300896.	19.5	56
191	Multifunctional Mesoporous Silica Nanoparticles as a Universal Platform for Drug Delivery. Chemistry of Materials, 2014, 26, 435-451.	6.7	780
192	Influence of the orientation of methylammonium lead iodide perovskite crystals on solar cell performance. APL Materials, 2014, 2, .	5.1	95
193	Formation of hexagonal and cubic fluorescent periodic mesoporous organosilicas in the channels of anodic alumina membranes. Journal of Materials Chemistry C, 2014, 2, 50-55.	5.5	15
194	Tuning the crystallinity parameters in macroporous titania films. Journal of Materials Chemistry A, 2014, 2, 6504.	10.3	19
195	Efficient Planar Heterojunction Perovskite Solar Cells Based on Formamidinium Lead Bromide. Journal of Physical Chemistry Letters, 2014, 5, 2791-2795.	4.6	250
196	A Zinc Phthalocyanine Based Periodic Mesoporous Organosilica Exhibiting Charge Transfer to Fullerenes. Chemistry - A European Journal, 2014, 20, 14971-14975.	3.3	25
197	Atomicâ€Layerâ€Deposited Aluminum and Zirconium Oxides for Surface Passivation of TiO ₂ in Highâ€Efficiency Organic Photovoltaics. Advanced Energy Materials, 2014, 4, 1400214.	19.5	52
198	Bright light-emitting diodes based on organometal halide perovskite. Nature Nanotechnology, 2014, 9, 687-692.	31.5	3,627

#	Article	IF	CITATIONS
199	Comparison of Solid-State Quantum-Dot-Sensitized Solar Cells with <i>ex Situ</i> and <i>in Situ</i> Grown PbS Quantum Dots. Journal of Physical Chemistry C, 2014, 118, 25853-25862.	3.1	29
200	Three-Dimensional Titanium Dioxide Nanomaterials. Chemical Reviews, 2014, 114, 9487-9558.	47.7	349
201	Insights into Nanoscale Electrophoresis of Single Dye Molecules in Highly Oriented Mesoporous Silica Channels. Journal of Physical Chemistry C, 2014, 118, 24013-24024.	3.1	8
202	Thick titania films with hierarchical porosity assembled from ultrasmall titania nanoparticles as photoanodes for dye-sensitized solar cells. New Journal of Chemistry, 2014, 38, 1996-2001.	2.8	10
203	Oriented Thin Films of a Benzodithiophene Covalent Organic Framework. ACS Nano, 2014, 8, 4042-4052.	14.6	188
204	Preparation of Single-Phase Films of CH ₃ NH ₃ Pb(I _{1–<i>x</i>} Br _{<i>x</i>}) ₃ with Sharp Optical Band Edges. Journal of Physical Chemistry Letters, 2014, 5, 2501-2505.	4.6	385
205	Tin doping speeds up hole transfer during light-driven water oxidation at hematite photoanodes. Physical Chemistry Chemical Physics, 2014, 16, 24610-24620.	2.8	159
206	Quantum-Dot-Sensitized Solar Cells with Water-Soluble and Air-Stable PbS Quantum Dots. Journal of Physical Chemistry C, 2014, 118, 5142-5149.	3.1	31
207	Bimodal Mesoporous Carbon Nanofibers with High Porosity: Freestanding and Embedded in Membranes for Lithium–Sulfur Batteries. Chemistry of Materials, 2014, 26, 3879-3886.	6.7	80
208	Medical nanoparticles for next generation drug delivery to the lungs. European Respiratory Journal, 2014, 44, 765-774.	6.7	118
209	A Photoactive Porphyrin-Based Periodic Mesoporous Organosilica Thin Film. Journal of the American Chemical Society, 2013, 135, 18513-18519.	13.7	48
210	Highly sensitive and selective fluoride detection in water through fluorophore release from a metal-organic framework. Scientific Reports, 2013, 3, 2562.	3.3	106
211	Facile synthesis of a mesoporous benzothiadiazole-COF based on a transesterification process. CrystEngComm, 2013, 15, 1500.	2.6	42
212	Cell Type Determines the Light-Induced Endosomal Escape Kinetics of Multifunctional Mesoporous Silica Nanoparticles. Nano Letters, 2013, 13, 1047-1052.	9.1	31
213	Mesoporosity – a new dimension for zeolites. Chemical Society Reviews, 2013, 42, 3689.	38.1	489
214	A fast analysis method to quantify nanoparticle uptake on a single cell level. Nanomedicine, 2013, 8, 1815-1828.	3.3	51
215	Lower tidal volume strategy (â‰^3Âml/kg) combined with extracorporeal CO2 removal versus â€~conventional' protective ventilation (6Âml/kg) in severe ARDS. Intensive Care Medicine, 2013, 39, 847-856	.8.2	474
216	A Photoconductive Thienothiopheneâ€Based Covalent Organic Framework Showing Charge Transfer Towards Included Fullerene. Angewandte Chemie - International Edition, 2013, 52, 2920-2924.	13.8	385

#	Article	IF	CITATIONS
217	Targeted Drug Delivery in Cancer Cells with Red-Light Photoactivated Mesoporous Silica Nanoparticles. Nano Letters, 2013, 13, 2576-2583.	9.1	169
218	Highly soluble energy relay dyes for dye-sensitized solar cells. Physical Chemistry Chemical Physics, 2013, 15, 11306.	2.8	25
219	Lengthâ€Dependent Charge Generation from Vertical Arrays of Highâ€Aspectâ€Ratio ZnO Nanowires. Chemistry - A European Journal, 2013, 19, 14665-14674.	3.3	70
220	Charge Transport in \${hbox{TiO}}_{2}\$ Films With Complex Percolation Pathways Investigated by Time-Resolved Terahertz Spectroscopy. IEEE Transactions on Terahertz Science and Technology, 2013, 3, 302-313.	3.1	33
221	Review. Fluorescence Microscopy Studies of Porous Silica Materials. Zeitschrift Fur Naturforschung - Section B Journal of Chemical Sciences, 2013, 68, 423-444.	0.7	10
222	Highly oriented surface-growth and covalent dye labeling of mesoporous metal–organic frameworks. Dalton Transactions, 2012, 41, 3899.	3.3	27
223	Multilayered High Surface Area "Brick and Mortar―Mesoporous Titania Films as Efficient Anodes in Dye-Sensitized Solar Cells. Chemistry of Materials, 2012, 24, 659-663.	6.7	25
224	Confinement in Oriented Mesopores Induces Piezoelectric Behavior of Polymeric Nanowires. Chemistry of Materials, 2012, 24, 4215-4221.	6.7	58
225	Highly Oriented Mesoporous Silica Channels Synthesized in Microgrooves and Visualized with Single-Molecule Diffusion. ACS Nano, 2012, 6, 1948-1960.	14.6	39
226	In Situ SAXS Study on a New Mechanism for Mesostructure Formation of Ordered Mesoporous Carbons: Thermally Induced Self-Assembly. Journal of the American Chemical Society, 2012, 134, 11136-11145.	13.7	55
227	Isoreticular Two-Dimensional Covalent Organic Frameworks Synthesized by On-Surface Condensation of Diboronic Acids. ACS Nano, 2012, 6, 7234-7242.	14.6	194
228	Capturing Ultrasmall EMT Zeolite from Template-Free Systems. Science, 2012, 335, 70-73.	12.6	260
229	Direct Visualization of Dye and Oligonucleotide Diffusion in Silica Filaments with Collinear Mesopores. Nano Letters, 2012, 12, 1354-1361.	9.1	23
230	One-dimensional metal–organic framework photonic crystals used as platforms for vapor sorption. Journal of Materials Chemistry, 2012, 22, 10356.	6.7	144
231	Cascaded Photoinduced Drug Delivery to Cells from Multifunctional Core–Shell Mesoporous Silica. Advanced Healthcare Materials, 2012, 1, 316-320.	7.6	41
232	Photoâ€induced Drug Delivery: Cascaded Photoinduced Drug Delivery to Cells from Multifunctional Core–Shell Mesoporous Silica (Adv. Healthcare Mater. 3/2012). Advanced Healthcare Materials, 2012, 1, 360-360.	7.6	0
233	Spherical Ordered Mesoporous Carbon Nanoparticles with High Porosity for Lithium–Sulfur Batteries. Angewandte Chemie - International Edition, 2012, 51, 3591-3595.	13.8	1,021
234	Nanoscale Porous Framework of Lithium Titanate for Ultrafast Lithium Insertion. Angewandte Chemie - International Edition, 2012, 51, 7459-7463.	13.8	155

#	Article	IF	CITATIONS
235	Nanofusion: Mesoporous Zeolites Made Easy. Chemistry - A European Journal, 2012, 18, 7671-7674.	3.3	33
236	A Man for Single Molecules. ChemPhysChem, 2012, 13, 883-884.	2.1	1
237	Assembly of mesoporous indium tin oxide electrodes from nano-hydroxide building blocks. Chemical Science, 2012, 3, 2367.	7.4	29
238	Immobilizing glycopyranose on mesoporous silica via "click-chemistry―for borate adsorption. Microporous and Mesoporous Materials, 2012, 147, 5-9.	4.4	22
239	Discrete tomography of demanding samples based on a modified SIRT algorithm. Ultramicroscopy, 2012, 115, 41-49.	1.9	30
240	Heparinâ€Coated Colloidal Mesoporous Silica Nanoparticles Efficiently Bind to Antithrombin as an Anticoagulant Drugâ€Đelivery System. Chemistry - A European Journal, 2012, 18, 428-432.	3.3	48
241	Controlling The Mobility Of Oligonucleotides In The Nanochannels Of Mesoporous Silica. Advanced Functional Materials, 2012, 22, 106-112.	14.9	13
242	Biomedical Applications: Controlling The Mobility Of Oligonucleotides In The Nanochannels Of Mesoporous Silica (Adv. Funct. Mater. 1/2012). Advanced Functional Materials, 2012, 22, 2-2.	14.9	0
243	Synthesis and characterization of CuInS2 thin film structures. Journal of Materials Science, 2012, 47, 1669-1676.	3.7	8
244	Implementing chemical functionality into oriented films of metal–organic frameworks on self-assembled monolayers. Journal of Materials Chemistry, 2011, 21, 14849.	6.7	29
245	Hierarchically structured biphenylene-bridged periodic mesoporous organosilica. Journal of Materials Chemistry, 2011, 21, 17338.	6.7	22
246	All-inorganic core–shell silica–titania mesoporous colloidal nanoparticles showing orthogonal functionality. Journal of Materials Chemistry, 2011, 21, 13817.	6.7	4
247	A Covalent Organic Framework with 4 nm open pores. Chemical Communications, 2011, 47, 1707.	4.1	168
248	Tuning the Conduction Mechanism in Niobium-Doped Titania Nanoparticle Networks. Journal of Physical Chemistry C, 2011, 115, 6968-6974.	3.1	13
249	One-Step Synthesis of Hierarchical Zeolite Beta via Network Formation of Uniform Nanocrystals. Journal of the American Chemical Society, 2011, 133, 5284-5295.	13.7	272
250	Characterization of Interfacial Modifiers for Hybrid Solar Cells. Journal of Physical Chemistry C, 2011, 115, 15081-15088.	3.1	42
251	Growing honeycombs on graphene. Nature Nanotechnology, 2011, 6, 333-335.	31.5	16
252	Synthesis of Well-Ordered COF Monolayers: Surface Growth of Nanocrystalline Precursors <i>>versus</i> > Direct On-Surface Polycondensation. ACS Nano, 2011, 5, 9737-9745.	14.6	211

#	Article	IF	CITATIONS
253	Controlled Growth of TiO2Nanotubes on Conducting Glass. Chemistry of Materials, 2011, 23, 155-162.	6.7	27
254	Formation of Interpenetrating Hierarchical Titania Structures by Confined Synthesis in Inverse Opal. Journal of the American Chemical Society, 2011, 133, 17274-17282.	13.7	90
255	"Liquid-Phase Calcination―of Colloidal Mesoporous Silica Nanoparticles in High-Boiling Solvents. Journal of the American Chemical Society, 2011, 133, 6484-6486.	13.7	32
256	Hierarchical Zeolite Beta via Nanoparticle Assembly with a Cationic Polymer. Chemistry of Materials, 2011, 23, 4301-4310.	6.7	96
257	Pores Within Pores—How to Craft Ordered Hierarchical Zeolites. Science, 2011, 333, 297-298.	12.6	47
258	Acupuncture in Critically Ill Patients Improves Delayed Gastric Emptying. Anesthesia and Analgesia, 2011, 112, 150-155.	2.2	50
259	Crystallization and porosity of ZSM-23. Microporous and Mesoporous Materials, 2011, 143, 253-262.	4.4	41
260	Mesoporous Structures Confined in Anodic Alumina Membranes. Advanced Materials, 2011, 23, 2395-2412.	21.0	104
261	pHâ€Responsive Release of Acetalâ€Linked Melittin from SBAâ€15 Mesoporous Silica. Angewandte Chemie - International Edition, 2011, 50, 6828-6830.	13.8	64
262	Cubic and Hexagonal Mesoporous Carbon in the Pores of Anodic Alumina Membranes. Chemistry - A European Journal, 2011, 17, 9463-9470.	3.3	20
263	Addition of Acetylsalicylic Acid to Heparin for Anticoagulation Management During Pumpless Extracorporeal Lung Assist. ASAIO Journal, 2011, 57, 164-168.	1.6	36
264	Bio-degradation study of colloidal mesoporous silica nanoparticles: Effect of surface functionalization with organo-silanes and poly(ethylene glycol). Microporous and Mesoporous Materials, 2010, 132, 60-71.	4.4	213
265	A Programmable DNAâ€Based Molecular Valve for Colloidal Mesoporous Silica. Angewandte Chemie - International Edition, 2010, 49, 4734-4737.	13.8	206
266	Oriented Nanoscale Films of Metal–Organic Frameworks By Roomâ€Temperature Gel‣ayer Synthesis. Angewandte Chemie - International Edition, 2010, 49, 7225-7228.	13.8	132
267	No change in the regional distribution of tidal volume during lateral posture in mechanically ventilated patients assessed by electrical impedance tomography. Clinical Physiology and Functional Imaging, 2010, 30, 234-240.	1.2	16
268	Stimuli-responsive Bragg stacks for chemo-optical sensing applications. , 2010, , .		7
269	Impact of different PEGylation patterns on the long-term bio-stability of colloidal mesoporous silica nanoparticles. Journal of Materials Chemistry, 2010, 20, 8693.	6.7	223
270	Ultrasmall Titania Nanocrystals and Their Direct Assembly into Mesoporous Structures Showing Fast Lithium Insertion. Journal of the American Chemical Society, 2010, 132, 12605-12611.	13.7	119

#	Article	IF	CITATIONS
271	Electrodeposition of Copper and Silver Nanowires in Hierarchical Mesoporous Silica/Anodic Alumina Nanostructures. Chemistry of Materials, 2010, 22, 5430-5436.	6.7	49
272	Multiple Nanowire Species Synthesized on a Single Chip by Selectively Addressable Horizontal Nanochannels. Nano Letters, 2010, 10, 1341-1346.	9.1	22
273	Oriented growth of the functionalized metal–organic framework CAU-1 on –OH- and –COOH-terminated self-assembled monolayers. Physical Chemistry Chemical Physics, 2010, 12, 4515.	2.8	50
274	Colchicine-Loaded Lipid Bilayer-Coated 50 nm Mesoporous Nanoparticles Efficiently Induce Microtubule Depolymerization upon Cell Uptake. Nano Letters, 2010, 10, 2484-2492.	9.1	151
275	The influence of the guest ion on the synthesis and sorption properties of an open framework lanthanide tetrakisphosphonate. CrystEngComm, 2010, 12, 1920.	2.6	14
276	Niobium-Doped Titania Nanoparticles: Synthesis and Assembly into Mesoporous Films and Electrical Conductivity. ACS Nano, 2010, 4, 5373-5381.	14.6	138
277	Role of Endosomal Escape for Disulfide-Based Drug Delivery from Colloidal Mesoporous Silica Evaluated by Live-Cell Imaging. Nano Letters, 2010, 10, 3684-3691.	9.1	155
278	Sorption behavior of an oriented surface-grown MOF-film studied by in situ X-ray diffraction. Journal of Materials Chemistry, 2010, 20, 3046.	6.7	45
279	Controlling the delivery kinetics from colloidal mesoporous silica nanoparticles with pH-sensitive gates. Journal of Materials Chemistry, 2010, 20, 4305.	6.7	70
280	Tuning the Thermal Relaxation of a Photochromic Dye in Functionalized Mesoporous Silica. Advanced Functional Materials, 2009, 19, 2027-2037.	14.9	27
281	Tuning Singleâ€Molecule Dynamics in Functionalized Mesoporous Silica. Chemistry - A European Journal, 2009, 15, 1661-1672.	3.3	29
282	Periodic Mesoporous Organosilica in Confined Environments. Chemistry - A European Journal, 2009, 15, 6645-6650.	3.3	21
283	Biotin–Avidin as a Proteaseâ€Responsive Cap System for Controlled Guest Release from Colloidal Mesoporous Silica. Angewandte Chemie - International Edition, 2009, 48, 3092-3095.	13.8	278
284	Tuning drug uptake and release rates through different morphologies and pore diameters of confined mesoporous silica. Microporous and Mesoporous Materials, 2009, 118, 435-442.	4.4	84
285	High-throughput screening of synthesis parameters in the formation of the metal-organic frameworks MOF-5 and HKUST-1. Microporous and Mesoporous Materials, 2009, 117, 111-117.	4.4	263
286	Molecular sieve catalysts on microcalorimeter chips for selective chemical sensing. Microporous and Mesoporous Materials, 2009, 119, 356-359.	4.4	13
287	Kinetics of water adsorption in microporous aluminophosphate layers for regenerative heat exchangers. Applied Thermal Engineering, 2009, 29, 1514-1522.	6.0	65
288	Vapor-Sensitive Bragg Mirrors and Optical Isotherms from Mesoporous Nanoparticle Suspensions. ACS Nano, 2009, 3, 1669-1676.	14.6	83

#	Article	IF	CITATIONS
289	Multiple Coreâ^'Shell Functionalized Colloidal Mesoporous Silica Nanoparticles. Journal of the American Chemical Society, 2009, 131, 11361-11370.	13.7	226
290	Two-Dimensional-Hexagonal Periodic Mesoporous Polymer Resin Thin Films by Soft Templating. Chemistry of Materials, 2009, 21, 5754-5762.	6.7	62
291	"Brick and Mortar―Strategy for the Formation of Highly Crystalline Mesoporous Titania Films from Nanocrystalline Building Blocks. Chemistry of Materials, 2009, 21, 1260-1265.	6.7	90
292	1,4-Phenylenebis(methylidyne)tetrakis(phosphonic acid): A New Building Block in Metal Organic Framework Synthesis. Inorganic Chemistry, 2009, 48, 4331-4341.	4.0	36
293	Exceptional Ion-Exchange Selectivity in a Flexible Open Framework Lanthanum(III)tetrakisphosphonate. Journal of the American Chemical Society, 2009, 131, 18112-18118.	13.7	209
294	Low-Temperature Synthesis of Mesoporous Titaniaâ^'Silica Films with Pre-Formed Anatase Nanocrystals. Chemistry of Materials, 2009, 21, 2410-2417.	6.7	48
295	Single layer growth of sub-micron metal–organic framework crystals observed by in situ atomic force microscopy. Chemical Communications, 2009, , 6294.	4.1	56
296	In situ functionalization of mesoporous silica within the pores of anodic alumina membranes. Journal of Materials Chemistry, 2009, 19, 9195.	6.7	7
297	Formation Mechanism of Mesostructured Silica in Confined Space: An In Situ GISAXS Study. ChemPhysChem, 2008, 9, 2059-2067.	2.1	32
298	Directing the Structure of Metal–Organic Frameworks by Oriented Surface Growth on an Organic Monolayer. Angewandte Chemie - International Edition, 2008, 47, 5777-5779.	13.8	175
299	Direct growth of Cu3(BTC)2(H2O)3•xH2O thin films on modified QCM-gold electrodes – Water sorption isotherms. Microporous and Mesoporous Materials, 2008, 114, 380-386.	4.4	181
300	Mesoporous ordered silica structures modified by metal organic reagents and their application in catalytic Michael additions. Microporous and Mesoporous Materials, 2008, 115, 629-633.	4.4	10
301	Oxidative removal of template molecules and organic functionalities in mesoporous silica nanoparticles by H2O2 treatment. Microporous and Mesoporous Materials, 2008, 116, 123-130.	4.4	49
302	Nanosized EDI-type molecular sieve. Microporous and Mesoporous Materials, 2008, 116, 258-266.	4.4	8
303	High-throughput investigation of inorganic–organic hybrid compounds: Systematic study of the system CdCl2/(H2O3PCH2)2N–CH2C6H4–COOH/NaOH. Solid State Sciences, 2008, 10, 837-846.	3.2	7
304	Porous Thin Films of Functionalized Mesoporous Silica Nanoparticles. ACS Nano, 2008, 2, 2324-2330.	14.6	61
305	Selective Functionalization of the Outer and Inner Surfaces in Mesoporous Silica Nanoparticles. Chemistry of Materials, 2008, 20, 7207-7214.	6.7	220
306	Nanosized SAPO-34 Synthesized from Colloidal Solutions. Chemistry of Materials, 2008, 20, 2956-2963.	6.7	127

#	Article	IF	CITATIONS
307	Large antibiotic molecule diffusion in confined mesoporous silica with controlled morphology. Journal of Materials Chemistry, 2008, 18, 5888.	6.7	52
308	Colloidal Suspensions of Functionalized Mesoporous Silica Nanoparticles. ACS Nano, 2008, 2, 791-799.	14.6	239
309	Click Chemistry for High-Density Biofunctionalization of Mesoporous Silica. Journal of the American Chemical Society, 2008, 130, 12558-12559.	13.7	168
310	Sequential transformations of organic nitrogen functionalities in periodic mesoporous silica. Journal of Materials Chemistry, 2008, 18, 3103.	6.7	3
311	Functionalization of Colloidal Mesoporous Silica by Metalorganic Reagents. Langmuir, 2008, 24, 14209-14214.	3.5	16
312	In Situ GISAXS Study of the Formation of Mesostructured Phases within the Pores of Anodic Alumina Membranes. Langmuir, 2008, 24, 5018-5023.	3.5	29
313	High-Silica Zeolite-β: From Stable Colloidal Suspensions to Thin Films. Journal of Physical Chemistry C, 2008, 112, 14274-14280.	3.1	24
314	Exceptionally Small Colloidal Zeolites Templated by Pd and Pt Amines. Langmuir, 2008, 24, 4310-4315.	3.5	14
315	Vertical Columnar Block-Copolymer-Templated Mesoporous Silica via Confined Phase Transformation. Journal of the American Chemical Society, 2008, 130, 17362-17371.	13.7	45
316	Assembly of Nanozeolite Monolayers on the Gold Substrates of Piezoelectric Sensors. Langmuir, 2008, 24, 11196-11202.	3.5	19
317	Diffusion of Oriented Single Molecules with Switchable Mobility in Networks of Long Unidimensional Nanochannels. Journal of the American Chemical Society, 2008, 130, 1638-1648.	13.7	87
318	Interventional Lung Assist: A New Concept of Protective Ventilation in Bridge to Lung Transplantation. ASAIO Journal, 2008, 54, 3-10.	1.6	38
319	Oriented Growth of the Metal Organic Framework Cu3(BTC)2(H2O)3·xH2O Tunable with Functionalized Self-Assembled Monolayers. Journal of the American Chemical Society, 2007, 129, 8054-8055.	13.7	499
320	Optimization of Reaction Conditions for the Metalorganic Modification of MCM-41. Chemistry of Materials, 2007, 19, 3568-3574.	6.7	26
321	Simultaneous Measurement of Orientational and Spectral Dynamics of Single Molecules in Nanostructured Hostâ~'Guest Materials. Journal of the American Chemical Society, 2007, 129, 5570-5579.	13.7	53
322	Metalâ^'Organic Modification of Periodic Mesoporous Silica:  Multiply Bonded Systems. Chemistry of Materials, 2007, 19, 5797-5802.	6.7	13
323	Host–Guest Interactions in Zeolites and Periodic Mesoporous Materials. Studies in Surface Science and Catalysis, 2007, , 611-XIX.	1.5	15
324	Oriented Growth of Metal and Semiconductor Nanostructures within Aligned Mesoporous Channels. Chemistry of Materials, 2007, 19, 1376-1381.	6.7	44

#	Article	IF	CITATIONS
325	Colloidal suspensions of mercapto-functionalized nanosized mesoporous silica. Journal of Materials Chemistry, 2007, 17, 624-631.	6.7	117
326	Nanosized Zeolites Templated by Metalâ^'Amine Complexes. Chemistry of Materials, 2007, 19, 1203-1205.	6.7	24
327	Confined Detection of High-Energy-Density Materials. Journal of Physical Chemistry C, 2007, 111, 6694-6699.	3.1	41
328	Probing the Intrapore Surface of Phenyl-Substituted Nanoscale Mesoporous SilicaPiezoelectric Sorption Measurements in Thin Films. Langmuir, 2007, 23, 12915-12922.	3.5	12
329	Colloidal Suspensions of Nanometer-Sized Mesoporous Silica. Advanced Functional Materials, 2007, 17, 605-612.	14.9	379
330	Oriented Growth of Single-Crystalline Bi2S3 Nanowire Arrays. ChemPhysChem, 2007, 8, 235-240.	2.1	32
331	Diverse copper clusters confined in microporous nanocrystals. Sensors and Actuators B: Chemical, 2007, 126, 338-343.	7.8	13
332	Exploration of nanostructured channel systems with single-molecule probes. Nature Materials, 2007, 6, 303-310.	27.5	171
333	Visualizing single-molecule diffusion in mesoporous materials. Nature, 2007, 450, 705-708.	27.8	221
334	AlPO-18 nanocrystals synthesized under microwave irradiation. Journal of Materials Chemistry, 2006, 16, 514-518.	6.7	46
335	Preparation of Oriented Mesoporous Carbon Nano-Filaments within the Pores of Anodic Alumina Membranes. Journal of the American Chemical Society, 2006, 128, 3920-3921.	13.7	72
336	Metalorganic modification of periodic mesoporous silica: aromatic nitrogen functionalities. Journal of Materials Chemistry, 2006, 16, 3629.	6.7	16
337	Colloidal Zeolites as Host Matrix for Copper Nanoclusters. Chemistry of Materials, 2006, 18, 3373-3380.	6.7	33
338	Synthesis, Structure and Properties of Related MicroporousN,Nâ€~-Piperazinebismethylenephosphonates of Aluminum and Titanium. Chemistry of Materials, 2006, 18, 1451-1457.	6.7	173
339	A new pumpless extracorporeal interventional lung assist in critical hypoxemia/hypercapnia*. Critical Care Medicine, 2006, 34, 1372-1377.	0.9	369
340	Variation of the Si/Al ratio in nanosized zeolite Beta crystals. Microporous and Mesoporous Materials, 2006, 90, 237-245.	4.4	197
341	Inorganic–organic hybrid compounds: Synthesis and characterization of three new metal phosphonates with similar characteristic structural features. Journal of Solid State Chemistry, 2006, 179, 145-155.	2.9	45
342	Environmental syntheses of nanosized zeolites with high yield and monomodal particle size distribution. Microporous and Mesoporous Materials, 2006, 96, 405-412.	4.4	89

#	Article	IF	CITATIONS
343	Synthesis and characterization of a new metal organic framework structure with a 2D porous system: (H2NEt2)2[Zn3(BDC)4]â‹3DEF. Solid State Sciences, 2006, 8, 363-370.	3.2	55
344	Tuning the Structure and Orientation of Hexagonally Ordered Mesoporous Channels in Anodic Alumina Membrane Hosts: A 2D Small-Angle X-ray Scattering Study. Angewandte Chemie - International Edition, 2006, 45, 1134-1138.	13.8	131
345	High-Density Energetic Material Hosted in Pure Silica MFI-Type Zeolite Nanocrystals. Advanced Materials, 2006, 18, 2440-2443.	21.0	19
346	Pumpless Extracorporeal Lung Assist (Pecla) in Patients With Acute Respiratory Distress Syndrome and Severe Brain Injury. Journal of Trauma, 2005, 58, 1294-1297.	2.3	79
347	Zeolite Beta nanosized assemblies. Microporous and Mesoporous Materials, 2005, 80, 227-235.	4.4	85
348	Zeolite beta films synthesized from basic and near-neutral precursor solutions and gels. Materials Science and Engineering C, 2005, 25, 570-576.	7.3	17
349	Femtochemistry of Guest Molecules Hosted in Colloidal Zeolites. Advanced Functional Materials, 2005, 15, 1973-1978.	14.9	13
350	Catalytic activity of micro/mesoporous composites in toluene alkylation with propylene. Applied Catalysis A: General, 2005, 281, 85-91.	4.3	68
351	Synthesis and Characterization of the Tetraphosphonic Acid Ester (Et2O3PCH2)4C6H2 and the Open-Framework Cadmium Tetraphosphonate, Cd2[(HO3PCH2)4C6H2]. Zeitschrift Fur Anorganische Und Allgemeine Chemie, 2005, 631, 575-581.	1.2	24
352	Zeolitic Host–Guest Interactions and Building Blocks for the Self-Assembly of Complex Materials. MRS Bulletin, 2005, 30, 713-720.	3.5	33
353	Gold Electroless Reduction in Nanosized Channels of Thiol-Modified SBA-15 Material. Journal of Physical Chemistry B, 2005, 109, 10737-10743.	2.6	70
354	Nondestructive Identification of Colloidal Molecular Sieves Stabilized in Water. Journal of Physical Chemistry B, 2005, 109, 17060-17065.	2.6	20
355	High-throughput investigation of metal carboxyarylphosphonate hybrid compounds. Journal of Materials Chemistry, 2005, 15, 1384.	6.7	92
356	High-Throughput Investigation and Characterization of Cobalt Carboxy Phosphonates. Inorganic Chemistry, 2005, 44, 5882-5889.	4.0	76
357	Ordered Micro/Mesoporous Composite Prepared as Thin Films. Journal of Physical Chemistry B, 2005, 109, 4485-4491.	2.6	54
358	Interlayer stacking disorder in zeolite beta family: a Raman spectroscopic study. Physical Chemistry Chemical Physics, 2005, 7, 2756.	2.8	52
359	Synthesis and Characterization of the Open-Framework Barium Bisphosphonate [Ba3(O3PCH2NH2CH2PO3)2(H2O)4]·3H2O. Inorganic Chemistry, 2005, 44, 9464-9470.	4.0	76
360	Micro/Mesoporous Composites Based on Colloidal Zeolite Grown in Mesoporous Matrix. Collection of Czechoslovak Chemical Communications, 2005, 70, 1829-1847.	1.0	7

#	Article	IF	CITATIONS
361	Colloidal molecular sieves: Model system for kinetic study of crystal growth process. Studies in Surface Science and Catalysis, 2004, 154, 163-170.	1.5	3
362	High-Throughput Synthesis of Phosphonate-Based Inorganic–Organic Hybrid Compounds under Hydrothermal Conditions. Angewandte Chemie - International Edition, 2004, 43, 749-752.	13.8	168
363	A new calcium tetraphosphonate containing small pores, Ca[(HO3PCH2)2N(H)–CH2C6H4CH2–N(H)(CH2PO3H)2]·2H2O. Microporous and Mesoporous Materials, 2004, 69, 65-69.	4.4	38
364	Inorganic–organic hybrid compounds: hydrothermal synthesis and characterization of a new three-dimensional metal tetraphosphonate Mn[(HO3PCH2)N(H)(CH2)4(H)N(CH2PO3H)2]. Journal of Solid State Chemistry, 2004, 177, 642-647.	2.9	44
365	Silicalite-1/polymer films with low-k dielectric constants. Applied Surface Science, 2004, 226, 155-160.	6.1	30
366	AlPO4-18 synthesized from colloidal precursors and its use for the preparation of thin films. Applied Surface Science, 2004, 226, 1-6.	6.1	19
367	Photochemistry of 2-(2â€~-Hydroxyphenyl)benzothiazole Encapsulated in Nanosized Zeolites. Journal of Physical Chemistry A, 2004, 108, 10640-10648.	2.5	43
368	Nanosized Gismondine Grown in Colloidal Precursor Solutions. Langmuir, 2004, 20, 5271-5276.	3.5	38
369	Synthesis and Characterization of a New Three-Dimensional Lanthanide Carboxyphosphonate: Ln4(H2O)7[O2Câ^'C5H10Nâ^'CH2-PO3]4(H2O)5. Inorganic Chemistry, 2004, 43, 3159-3163.	4.0	130
370	Closely Packed Zeolite Nanocrystals Obtained via Transformation of Porous Amorphous Silica. Chemistry of Materials, 2004, 16, 5452-5459.	6.7	50
371	Gold Nanoshells Improve Single Nanoparticle Molecular Sensors. Nano Letters, 2004, 4, 1853-1857.	9.1	246
372	Novel colloidal aluminophosphate synthesized under microwave irradiation. Journal of Materials Chemistry, 2004, 14, 2972-2974.	6.7	5
373	Title is missing!. Journal of Materials Science Letters, 2003, 22, 751-753.	0.5	3
374	Synthesis and characterization of V- and Ti-substituted mesoporous materials. Materials Science and Engineering C, 2003, 23, 817-821.	7.3	21
375	Functionalized cubic mesostructured silica films. Materials Science and Engineering C, 2003, 23, 827-831.	7.3	20
376	Preparation of nanosized micro/mesoporous composites. Materials Science and Engineering C, 2003, 23, 1001-1005.	7.3	48
377	Inorganic–organic hybrid compounds: synthesis and crystal structure determination from powder diffraction data of Sn2[O3PCH2C6H4CH2PO3]. Solid State Sciences, 2003, 5, 629-634.	3.2	25
378	In Situ Incorporation of 2-(2-Hydroxyphenyl)benzothiazole within FAU Colloidal Crystals. Angewandte Chemie - International Edition, 2003, 42, 1611-1614.	13.8	38

#	Article	IF	CITATIONS
379	Inorganic–organic hybrid materials: synthesis and crystal structure determination from powder diffraction data of Pb2(O3PCH2C6H4CH2PO3). Journal of Solid State Chemistry, 2003, 173, 293-298.	2.9	31
380	Preparation of nanosized micro/mesoporous composites via simultaneous synthesis of Beta/MCM-48 phases. Microporous and Mesoporous Materials, 2003, 64, 165-174.	4.4	143
381	Fe-containing mesoporous film hosts for carbon nanotubes. Materials Science and Engineering C, 2003, 23, 145-149.	7.3	11
382	Synthesis of colloidal AlPO4-18 crystals and their use for supported film growth. Journal of Materials Chemistry, 2003, 13, 1526.	6.7	25
383	Stable Mesostructured Silicate Films Containing Nanosized Zeolite. Chemistry of Materials, 2003, 15, 2240-2246.	6.7	22
384	Spin-coating induced self-assembly of pure silica and Fe-containing mesoporous films. Studies in Surface Science and Catalysis, 2002, 142, 1465-1472.	1.5	0
385	Mechanism of the Transformation of Silica Precursor Solutions into Si-MFI Zeolite. Angewandte Chemie - International Edition, 2002, 41, 2558-2561.	13.8	120
386	Crystallization of nanosized MEL-type zeolite from colloidal precursors. Materials Science and Engineering C, 2002, 19, 111-114.	7.3	21
387	Humidity Sensing with Ultrathin LTA-Type Molecular Sieve Films Grown on Piezoelectric Devices. Chemistry of Materials, 2001, 13, 901-905.	6.7	137
388	Nanoscale crystal orientation in silicalite-1 films studied by grazing incidence X-ray diffraction. Microporous and Mesoporous Materials, 2001, 43, 191-200.	4.4	21
389	High throughput experimentation for the synthesis of new crystalline microporous solids. Microporous and Mesoporous Materials, 2001, 48, 355-365.	4.4	49
390	Transformation of amorphous silica colloids to nanosized MEL zeolite. Microporous and Mesoporous Materials, 2001, 50, 121-128.	4.4	44
391	Nanosized zeolite films for vapor-sensing applications. Microporous and Mesoporous Materials, 2001, 50, 159-166.	4.4	157
392	Solvatochromism of a Copper(II) (Tetramethylethylenediamine)-(acetylacetonate)+ Complex Encapsulated in EMT Zeolite Cages. Advanced Materials, 2001, 13, 208-211.	21.0	35
393	Microporous Films Prepared by Spin-Coating Stable Colloidal Suspensions of Zeolites. Advanced Materials, 2001, 13, 1880.	21.0	160
394	Adsorption of Diisocyanides on Gold. Langmuir, 2000, 16, 6183-6187.	3.5	107
395	Efficient Assays for Combinatorial Methods for the Discovery of Catalysts. Angewandte Chemie - International Edition, 1999, 38, 323-326.	13.8	91
396	Combinatorial Methods for the Synthesis of Aluminophosphate Molecular Sieves. Angewandte Chemie - International Edition, 1999, 38, 2891-2894.	13.8	62

#	Article	IF	CITATIONS
397	Electron Microscopy Reveals the Nucleation Mechanism of Zeolite Y from Precursor Colloids. Angewandte Chemie - International Edition, 1999, 38, 3201-3204.	13.8	213
398	Optical Sensing in Nanopores. Encapsulation of the Solvatochromic Dye Nile Red in Zeolites. Journal of the American Chemical Society, 1999, 121, 448-449.	13.7	111
399	Mechanism of Zeolite A Nanocrystal Growth from Colloids at Room Temperature. Science, 1999, 283, 958-960.	12.6	593
400	Asymmetric catalysis on solids. Current Opinion in Solid State and Materials Science, 1999, 4, 85-96.	11.5	46
401	Synthesis of Ordered Mesoporous Methacrylate Hybrid Systems:  Hosts for Molecular Polymer Composites. Chemistry of Materials, 1999, 11, 665-673.	6.7	127
402	Efficient Assays for Combinatorial Methods for the Discovery of Catalysts. Angewandte Chemie - International Edition, 1999, 38, 323-326.	13.8	1
403	Electron Microscopy Reveals the Nucleation Mechanism of Zeolite Y from Precursor Colloids. Angewandte Chemie - International Edition, 1999, 38, 3201-3204.	13.8	2
404	Entrapment of PMMA Polymer Strands in Micro- and Mesoporous Materials. Chemistry of Materials, 1998, 10, 1841-1852.	6.7	168
405	Nanosized AlPO4-5 Molecular Sieves and Ultrathin Films Prepared by Microwave Synthesis. Chemistry of Materials, 1998, 10, 4030-4036.	6.7	131
406	Inclusion Chemistry in Periodic Mesoporous Hosts. Chemistry of Materials, 1998, 10, 2950-2963.	6.7	919
407	Electron paramagnetic resonance and microwave conductivity in pyrolyzed polyacrylonitrile chains included in zeolites. Physical Review B, 1997, 56, 12899-12904.	3.2	12
408	Growth of oriented molecular sieves on organic layers. Studies in Surface Science and Catalysis, 1997, 105, 2147-2154.	1.5	5
409	Intrazeolite assembly of a chiral manganese salen epoxidation catalyst. Chemical Communications, 1997, , 901-902.	4.1	191
410	Intrazeolite Complexation of Transition Metal Ions by Triazacyclononane-Type Ligands:Â Control of Cluster Nuclearity and Oxygen Binding in Confined Reaction Spaces. Journal of the American Chemical Society, 1997, 119, 9460-9465.	13.7	27
411	Methyltrioxorhenium Encapsulated in Zeolite Y:Â Tunable Olefin Metathesis Catalyst. Chemistry of Materials, 1997, 9, 2252-2254.	6.7	28
412	Zeolite encapsulated vanadium oxo species for the catalytic reduction of NO by NH3. Catalysis Today, 1997, 33, 263-278.	4.4	22
413	Growth of silicalite films on pre-assembled layers of nanoscale seed crystals on piezoelectric chemical sensors. Advanced Materials, 1997, 9, 585-589.	21.0	74
414	Single Electron Tunneling in Molecular Nanostructures of Crystalline Gold Clusters Attached by Dithiols to Au [111]: Direct I(V) Measurements of Individual Surface Attached Gold Clusters by STM. , 1997, , 489-501.		0

#	Article	IF	CITATIONS
415	Assembly of Oriented Nanometer Channels on Organic Layers. , 1997, , 335-344.		0
416	Highly selective epoxidation of alkenes and styrenes with H2O2 and manganese complexes of the cyclic triamine 1,4,7-trimethyl-1,4,7-triazacyclononane. Chemical Communications, 1996, , 917.	4.1	107
417	Covalent Attachment of Nickel Clusters to Gold Electrode Surfaces. Formation of Rectifying Molecular Layers. Langmuir, 1996, 12, 3075-3081.	3.5	27
418	ESR Fine Structure of Manganese lons in Zeolite A Detects Strong Variations of the Coordination Environment. Journal of the American Chemical Society, 1996, 118, 9615-9622.	13.7	44
419	Adsorption of Zirconiumâ^'Phosphonate Multilayers onto Phosphate-Derivatized Glassy Carbon Substrates. Chemistry of Materials, 1996, 8, 1865-1870.	6.7	27
420	Synthesis and Applications of Molecular Sieve Layers and Membranesâ€. Chemistry of Materials, 1996, 8, 1636-1653.	6.7	433
421	Microwave synthesis of molecular sieve MCM-41. Chemical Communications, 1996, , 925.	4.1	111
422	Conjugated and conducting nanostructures in zeolites. Studies in Surface Science and Catalysis, 1996, 102, 295-322.	1.5	29
423	"Coulomb Staircase" at Room Temperature in a Self-Assembled Molecular Nanostructure. Science, 1996, 272, 1323-1325.	12.6	987
424	Self-assembled monolayers of dithiols, diisocyanides, and isocyanothiols on gold: â€~chemically sticky' surfaces for covalent attachment of metal clusters and studies of interfacial electron transfer. Inorganica Chimica Acta, 1996, 242, 115-124.	2.4	107
425	Highly Selective Epoxidation Catalysts Derived from Intrazeolite Trimethyltriazacyclononane-Manganese Complexes. Angewandte Chemie International Edition in English, 1996, 35, 2211-2213.	4.4	124
426	Highly selective olefin epoxidation with manganese triazacyclononane complexes: Impact of ligand substitution. Journal of Organometallic Chemistry, 1996, 520, 195-200.	1.8	97
427	Molecular recognition in zeolite thin film sensors. Growth of oriented zeolite films. Studies in Surface Science and Catalysis, 1995, , 281-282.	1.5	9
428	Attachment and reactivity of tin-cobalt and tin-molybdenumcomplexes in Y zeolites and MCM-41. Studies in Surface Science and Catalysis, 1995, 98, 138-139.	1.5	0
429	Zeolite Thin Films with Tunable Molecular Sieve Function. Journal of the American Chemical Society, 1995, 117, 9990-9994.	13.7	100
430	Optical Effects in Reflection-Absorption IR Spectroscopy of Thin Films of Silane Coupling Agents on Metallic Surfaces. Langmuir, 1995, 11, 578-584.	3.5	29
431	Thin Films of (3-Aminopropyl)triethoxysilane on Aluminum Oxide and Gold Substrates. Langmuir, 1995, 11, 3061-3067.	3.5	131
432	Encapsulation of Tetracarbonyl(trimethylstannyl)cobalt in NaY Zeolite: Reactivity and Alloy Cluster Formation. The Journal of Physical Chemistry, 1994, 98, 12067-12074.	2.9	10

#	Article	IF	CITATIONS
433	Bimetallic Complexes in Zeolites: Reactivity of Tetracarbonyl(trimethylstannyl)cobalt in Acidic Zeolite Y. The Journal of Physical Chemistry, 1994, 98, 13651-13657.	2.9	4
434	Growth of oriented molecular sieve crystals on organophosphonate films. Nature, 1994, 368, 834-836.	27.8	157
435	Vertical Aluminophosphate Molecular Sieve Crystals Grown at Inorganic-Organic Interfaces. Science, 1994, 265, 1839-1841.	12.6	145
436	Conducting Polyaniline Filaments in a Mesoporous Channel Host. Science, 1994, 264, 1757-1759.	12.6	1,082
437	Conducting Carbon Wires in Ordered, Nanometer-Sized Channels. Science, 1994, 266, 1013-1015.	12.6	363
438	Reactivity of a trimethylstannyl molybdenum complex in mesoporous MCM-41. Journal of the Chemical Society Chemical Communications, 1994, , 2619.	2.0	63
439	Polyaniline Wires in Oxidant-Containing Mesoporous Channel Hosts. Chemistry of Materials, 1994, 6, 1109-1112.	6.7	184
440	Surface Attachment and Stability of Cross-Linked Poly(ethylenimine)-Epoxy Networks on Gold. Chemistry of Materials, 1994, 6, 2143-2150.	6.7	15
441	Molecular recognition on acoustic wave devices: Zeolite thin films coated with organosilane gate layers. Microporous Materials, 1993, 1, 413-422.	1.6	13
442	Nanometre assembly lines. Nature, 1993, 361, 207-208.	27.8	4
443	Surface reactions on thin layers of silane coupling agents. Langmuir, 1993, 9, 2965-2973.	3.5	225
444	Molecular recognition through intercalation chemistry: immobilization of organoclays on piezoelectric devices. Chemistry of Materials, 1993, 5, 905-907.	6.7	66
445	The low-field conductivity of zeolite-encapsulated molecular wires. Synthetic Metals, 1993, 57, 5063-5068.	3.9	8
446	Polythiophenes and oligothiophenes in zeolite hosts: Conjugated nanometer size filaments. Synthetic Metals, 1993, 55, 1238-1245.	3.9	21
	Wetais, 1995, 55, 1250-1245.		
447	SYNTHESIS OF OLIGO- AND POLYTHIOPHENES IN ZEOLITE HOSTS. , 1993, , 177-184.		0
447 448			
	SYNTHESIS OF OLIGO- AND POLYTHIOPHENES IN ZEOLITE HOSTS. , 1993, , 177-184.	2.9	0

#	Article	IF	CITATIONS
451	Molecular Recognition on Acoustic Wave Devices: Modified Zeolite-Silica Thin Films With Tailored Adsorption Properties. Materials Research Society Symposia Proceedings, 1992, 271, 435.	0.1	4
452	Molecular recognition on acoustic wave devices: sorption in chemically anchored zeolite monolayers. The Journal of Physical Chemistry, 1992, 96, 9387-9393.	2.9	126
453	Intrazeolite assembly and pyrolysis of polyacrylonitrile. Journal of the Chemical Society Chemical Communications, 1992, , 633.	2.0	23
454	Monomolecular layers and thin films of silane coupling agents by vapor-phase adsorption on oxidized aluminum. The Journal of Physical Chemistry, 1992, 96, 6707-6712.	2.9	45
455	Molecular sieve sensors for selective ethanol detection. Chemistry of Materials, 1992, 4, 975-977.	6.7	62
456	Poly(acrylonitrile) chains in zeolite channels: polymerization and pyrolysis. Chemistry of Materials, 1992, 4, 819-824.	6.7	104
457	Supramolecular Architecture. ACS Symposium Series, 1992, , 1-7.	0.5	3
458	Zeolite Inclusion Chemistry. ACS Symposium Series, 1992, , 274-293.	0.5	17
459	Quantification of the Reactivity of 3-Aminopropyl-triethoxysilane Monolayers with the Quartz-Crystal Microbalance. Angewandte Chemie International Edition in English, 1992, 31, 336-338.	4.4	34
460	Spins et porteurs de charge de polymères conducteurs inclus dans les cavités d'une zéolithe. Journal De Chimie Physique Et De Physico-Chimie Biologique, 1992, 89, 1137-1142.	0.2	7
461	Intrazeolite phototopotaxy: EXAFS analysis of precursor 8{W(CO)6}-Na56Y and photooxidation products 16(WO3)-Na56Y and 28(WO3)-Na56Y. The Journal of Physical Chemistry, 1991, 95, 5276-5281.	2.9	28
462	Doping And Band-Gap Engineering Of An Intrazeolite Tungsten(Vi) Oxide Supralatiice. Materials Research Society Symposia Proceedings, 1991, 233, 109.	0.1	3
463	Zeolite Crystal Layers Coupled To Piezoelectric Sensors: Molecular Recognition Demces. Materials Research Society Symposia Proceedings, 1991, 233, 175.	0.1	6
464	Surface Chemistry Of Heterobimetallic Ge-M (M = Mo, W) Complexes In Zeolite Y. Materials Research Society Symposia Proceedings, 1991, 233, 195.	0.1	0
465	Three-dimensionally confined diluted magnetic semiconductor clusters: Zn1â^'xMnxS. Solid State Communications, 1991, 77, 33-38.	1.9	151
466	Reduction and cluster growth of palladium in zeolite Y containing transition metal ions. X-ray absorption studies. The Journal of Physical Chemistry, 1990, 94, 845-853.	2.9	16
467	Oxometalate-Glass Composites and Thin Films. Materials Research Society Symposia Proceedings, 1990, 180, 595.	0.1	1
468	Designing zeolite catalysts for shape-selective reactions: Chemical modification of surfaces for improved selectivity to dimethylamine in synthesis from methanol and ammonia. Journal of Catalysis, 1990, 124, 268-280.	6.2	34

#	Article	IF	CITATIONS
469	EXAFS Analysis of Size-Constrained Semiconducting Materials. Molecular Crystals and Liquid Crystals Incorporating Nonlinear Optics, 1990, 181, 305-314.	0.3	1
470	Inclusion Polymerization and Doping in Zeolite Channels: Polyaniline. Molecular Crystals and Liquid Crystals Incorporating Nonlinear Optics, 1990, 181, 315-324.	0.3	7
471	Intrazeolite attachment of a Ge–Mo heterobimetallic complex. Journal of the Chemical Society Chemical Communications, 1990, , 28-29.	2.0	3
472	Intrazeolite metal carbonyl topotaxy. A comprehensive structural and spectroscopic study of intrazeolite Group VI metal hexacarbonyls and subcarbonyls. Journal of the American Chemical Society, 1990, 112, 9575-9586.	13.7	89
473	Inclusion of Organometallics in Zeolite Host Structures. , 1990, , 339-350.		0
474	Chemistry of cyclopentadienyliron dicarbonyl dimer and ferrocene in zeolite Y cavities: anchoring organometallic fragments into microporous solids. The Journal of Physical Chemistry, 1989, 93, 4562-4571.	2.9	27
475	Polypyrrolketten in ZeolithkanÃken. Angewandte Chemie, 1989, 101, 1737-1738.	2.0	41
476	Encapsulation of Polypyrrole Chains in Zeolite Channels. Angewandte Chemie International Edition in English, 1989, 28, 1692-1694.	4.4	162
477	Molecular sieve sensors for selective detection at the nanogram level. Journal of the American Chemical Society, 1989, 111, 7640-7641.	13.7	137
478	Stabilization of cadmium selenide molecular clusters in zeolite Y: EXAFS and x-ray diffraction studies. Journal of the American Chemical Society, 1989, 111, 2564-2571.	13.7	106
479	Encapsulation of lead sulfide molecular clusters into solid matrixes. Structural analysis with x-ray absorption spectroscopy. Inorganic Chemistry, 1989, 28, 2914-2919.	4.0	51
480	Intrazeolite synthesis of polythiophene chains. Journal of the Chemical Society Chemical Communications, 1989, , 1326.	2.0	73
481	Inclusion of polyaniline filaments in zeolite molecular sieves. The Journal of Physical Chemistry, 1989, 93, 6270-6272.	2.9	191
482	Structure and optical properties of cadmium sulfide superclusters in zeolite hosts. Journal of the American Chemical Society, 1989, 111, 530-540.	13.7	428
483	Synthesis and characterization of group III-V semiconductor clusters: gallium phosphide GaP in zeolite Y. Journal of the American Chemical Society, 1989, 111, 8006-8007.	13.7	105
484	Stabilization of Conducting Heteroaromatic Polymers in Large-Pore Zeolite Channels. Advances in Chemistry Series, 1989, , 433-449.	0.6	15
485	Organometallic fragments in microporous solids: intrazeolite chemistry of (cyclooctatetraene)iron tricarbonyl. The Journal of Physical Chemistry, 1989, 93, 4205-4213.	2.9	11
486	Stabilization of metal ensembles at room temperature: palladium clusters in zeolites. The Journal of Physical Chemistry, 1989, 93, 6116-6120.	2.9	49

#	Article	lF	CITATIONS
487	Intrazeolite chemistry of nickel(0) complexes and Ni(0,II) clusters studied by EXAFS, solid-state NMR and FT-IR spectroscopy. Journal of the American Chemical Society, 1988, 110, 1801-1810.	13.7	41
488	Characterization of selenium-loaded molecular sieves A, X, Y, AlPO-5, and mordenite. Inorganic Chemistry, 1988, 27, 221-228.	4.0	104
489	Solid-state silicon-29 NMR and infrared studies of the reactions of mono- and polyfunctional silanes with zeolite Y surfaces. Journal of the American Chemical Society, 1988, 110, 4546-4553.	13.7	48
490	Formation and Characterization of Inorganic Membranes from Zeolite-Silica Microcomposites. Materials Research Society Symposia Proceedings, 1988, 121, 761.	0.1	5
491	Zeolite Supported Iron Oxide as Catalyst or Catalyst Precursor for Hydrocarbon Conversion Reactions. Zeitschrift Fur Elektrotechnik Und Elektrochemie, 1986, 90, 395-398.	0.9	7
492	Photolytic and thermolytic decomposition products from iron pentacarbonyl adsorbed on Y zeolite. Zeolites, 1985, 5, 240-244.	0.5	14
493	Substrate effect on the growth of iron clusters in Y zeolite. Surface Science, 1985, 156, 57-63.	1.9	8
494	C4 olefin conversion on reduced nickel y faujasite: Evidence for C5 olefin formation via C4 olefin disproportionation. Reaction Kinetics and Catalysis Letters, 1984, 26, 153-157.	0.6	3
495	Interaction between zeolites and cluster compounds. Part 2.—Thermal decomposition of iron pentacarbonyl on zeolites. Journal of the Chemical Society Faraday Transactions I, 1984, 80, 1391.	1.0	30
496	Interaction between zeolites and cluster compounds. Part 1.—Adsorption of iron pentacarbonyl on zeolites. Journal of the Chemical Society Faraday Transactions I, 1983, 79, 1819.	1.0	49
497	Kinetics of ammonia penetrating into the sodalite units of sodium faujasites studied by nuclear magnetic resonance. The Journal of Physical Chemistry, 1979, 83, 1233-1234.	2.9	8
498	Origin of Enhanced Efficiency of Tin-doped Ultrathin Hematite Photoanodes for Water-Splitting. , 0, , .		0
499	Origin of Enhanced Efficiency of Tin-doped Ultrathin Hematite Photoanodes for Water-Splitting. , 0, , .		0
500	2D/3D Hybrid Cs2AgBiBr6 Double Perovskite Solar Cells: Improved Energy Level Alignment for Higher Contact-Selectivity and Large Open Circuit Voltage. , 0, , .		0
501	Silver-Bismuth based 2D Double Perovskites (4FPEA)4AgBiX8 (X=Cl, Br, I): Highly Oriented Thin Films with Large Domain Sizes and Ultrafast Charge-Carrier Localization. , 0, , .		0